Yunhao Du, Zhihang Tong, Jun-Jun Wan, Binyu Zhang, Yanyun Zhao
{"title":"PAMI-AD:一种利用监控视频中部分注意力和运动信息的活动检测器","authors":"Yunhao Du, Zhihang Tong, Jun-Jun Wan, Binyu Zhang, Yanyun Zhao","doi":"10.1109/ICMEW56448.2022.9859481","DOIUrl":null,"url":null,"abstract":"Activity detection in surveillance videos is a challenging task caused by small objects, complex activity categories, its untrimmed nature, etc. Existing methods are generally limited in performance due to inaccurate proposals, poor classifiers or inadequate post-processing method. In this work, we propose a comprehensive and effective activity detection system in untrimmed surveillance videos for person-centered and vehicle-centered activities. It consists of four modules, i.e., object localizer, proposal filter, activity classifier and activity refiner. For person-centered activities, a novel part-attention mechanism is proposed to explore detailed features in different body parts. As for vehicle-centered activities, we propose a localization masking method to jointly encode motion and foreground attention features. We conduct experiments on the large-scale activity detection datasets VIRAT, and achieve the best results for both groups of activities. Furthermore, our team won the 1st place in the TRECVID 2021 ActEV challenge.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PAMI-AD: An Activity Detector Exploiting Part-Attention and Motion Information in Surveillance Videos\",\"authors\":\"Yunhao Du, Zhihang Tong, Jun-Jun Wan, Binyu Zhang, Yanyun Zhao\",\"doi\":\"10.1109/ICMEW56448.2022.9859481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity detection in surveillance videos is a challenging task caused by small objects, complex activity categories, its untrimmed nature, etc. Existing methods are generally limited in performance due to inaccurate proposals, poor classifiers or inadequate post-processing method. In this work, we propose a comprehensive and effective activity detection system in untrimmed surveillance videos for person-centered and vehicle-centered activities. It consists of four modules, i.e., object localizer, proposal filter, activity classifier and activity refiner. For person-centered activities, a novel part-attention mechanism is proposed to explore detailed features in different body parts. As for vehicle-centered activities, we propose a localization masking method to jointly encode motion and foreground attention features. We conduct experiments on the large-scale activity detection datasets VIRAT, and achieve the best results for both groups of activities. Furthermore, our team won the 1st place in the TRECVID 2021 ActEV challenge.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PAMI-AD: An Activity Detector Exploiting Part-Attention and Motion Information in Surveillance Videos
Activity detection in surveillance videos is a challenging task caused by small objects, complex activity categories, its untrimmed nature, etc. Existing methods are generally limited in performance due to inaccurate proposals, poor classifiers or inadequate post-processing method. In this work, we propose a comprehensive and effective activity detection system in untrimmed surveillance videos for person-centered and vehicle-centered activities. It consists of four modules, i.e., object localizer, proposal filter, activity classifier and activity refiner. For person-centered activities, a novel part-attention mechanism is proposed to explore detailed features in different body parts. As for vehicle-centered activities, we propose a localization masking method to jointly encode motion and foreground attention features. We conduct experiments on the large-scale activity detection datasets VIRAT, and achieve the best results for both groups of activities. Furthermore, our team won the 1st place in the TRECVID 2021 ActEV challenge.