{"title":"非线性系统模糊控制的稳定性分析","authors":"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Shu-Hao Lin","doi":"10.1109/ACIIDS.2009.83","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Fuzzy Control for Nonlinear Systems\",\"authors\":\"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Shu-Hao Lin\",\"doi\":\"10.1109/ACIIDS.2009.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability Analysis of Fuzzy Control for Nonlinear Systems
In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.