非线性系统模糊控制的稳定性分析

Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Shu-Hao Lin
{"title":"非线性系统模糊控制的稳定性分析","authors":"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Shu-Hao Lin","doi":"10.1109/ACIIDS.2009.83","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Fuzzy Control for Nonlinear Systems\",\"authors\":\"Po-Chen Chen, K. Yeh, Cheng-Wu Chen, Shu-Hao Lin\",\"doi\":\"10.1109/ACIIDS.2009.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种基于遗传算法的参考ANNC的稳定性分析方法,该方法能够处理非线性系统的这些类型的问题。通过遗传算法确定后续参数向量的初始值,然后基于Lyapunov稳定性理论推导出一种改进的自适应律来控制非线性系统跟踪自定义参考模型。满足了卡尔曼-雅库波维奇引理的要求。在这些更新律中引入边界层函数来覆盖参数误差和建模误差,并保证状态误差收敛到指定的误差界内。在此基础上,推导了一种自适应神经网络控制器(ANNC),实现了系统的稳定和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of Fuzzy Control for Nonlinear Systems
In this study, we propose a method of stability analysis for a GA-Based reference ANNC capable of handling these types of problems for a nonlinear system. The initial values of the consequent parameter vector are decided via a genetic algorithm (GA) after which a modified adaptive law is derived based on Lyapunov stability theory to control the nonlinear system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling. A boundary-layer function is introduced into these updating laws to cover parameter and modeling errors, and to guarantee that the state errors converge into a specified error bound. After this, an adaptive neural network controller (ANNC) is derived to simultaneously stabilize and control the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信