指纹呈现攻击检测:一种传感器和材料不可知方法

Steven A. Grosz, T. Chugh, Anil K. Jain
{"title":"指纹呈现攻击检测:一种传感器和材料不可知方法","authors":"Steven A. Grosz, T. Chugh, Anil K. Jain","doi":"10.1109/IJCB48548.2020.9304863","DOIUrl":null,"url":null,"abstract":"The vulnerability of automated fingerprint recognition systems to presentation attacks (PAs), i.e., spoof or altered fingers, has been a growing concern, warranting the development of accurate and efficient presentation attack detection (PAD) methods. However, one major limitation of the existing PAD solutions is their poor generalization to new PA materials and fingerprint sensors, not used in training. In this study, we propose a robust PAD solution with improved cross-material and cross-sensor generalization. Specifically, we build on top of any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization using a style transfer network wrapper. We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD. Experimental results on LivDet 2015 and 2017 public domain datasets exhibit the effectiveness of the proposed approach.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fingerprint Presentation Attack Detection: A Sensor and Material Agnostic Approach\",\"authors\":\"Steven A. Grosz, T. Chugh, Anil K. Jain\",\"doi\":\"10.1109/IJCB48548.2020.9304863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vulnerability of automated fingerprint recognition systems to presentation attacks (PAs), i.e., spoof or altered fingers, has been a growing concern, warranting the development of accurate and efficient presentation attack detection (PAD) methods. However, one major limitation of the existing PAD solutions is their poor generalization to new PA materials and fingerprint sensors, not used in training. In this study, we propose a robust PAD solution with improved cross-material and cross-sensor generalization. Specifically, we build on top of any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization using a style transfer network wrapper. We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD. Experimental results on LivDet 2015 and 2017 public domain datasets exhibit the effectiveness of the proposed approach.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

自动指纹识别系统易受表示攻击(PAs),即欺骗或改变手指,已成为一个日益关注的问题,要求开发准确和有效的表示攻击检测(PAD)方法。然而,现有的PAD解决方案的一个主要限制是它们对新的PA材料和指纹传感器的泛化能力差,而不是用于训练。在这项研究中,我们提出了一种鲁棒的PAD解决方案,具有改进的跨材料和跨传感器泛化。具体来说,我们建立在任何基于cnn的指纹欺骗检测架构的基础上,结合使用风格传递网络包装器的跨材料欺骗泛化。我们还将对抗表示学习(ARL)结合到深度神经网络(DNN)中,以学习PAD的传感器和材料不变表示。在LivDet 2015和2017公共领域数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingerprint Presentation Attack Detection: A Sensor and Material Agnostic Approach
The vulnerability of automated fingerprint recognition systems to presentation attacks (PAs), i.e., spoof or altered fingers, has been a growing concern, warranting the development of accurate and efficient presentation attack detection (PAD) methods. However, one major limitation of the existing PAD solutions is their poor generalization to new PA materials and fingerprint sensors, not used in training. In this study, we propose a robust PAD solution with improved cross-material and cross-sensor generalization. Specifically, we build on top of any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization using a style transfer network wrapper. We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD. Experimental results on LivDet 2015 and 2017 public domain datasets exhibit the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信