Jordan Schupbach, Elliott Pryor, Kyle Webster, John W. Sheppard
{"title":"结合动态贝叶斯网络和连续时间贝叶斯网络进行诊断和预测建模","authors":"Jordan Schupbach, Elliott Pryor, Kyle Webster, John W. Sheppard","doi":"10.1109/AUTOTESTCON47462.2022.9984758","DOIUrl":null,"url":null,"abstract":"The problem of performing general prognostics and health management, especially in electronic systems, continues to present significant challenges. The low availability of failure data, makes learning generalized models difficult, and constructing generalized models during the design phase often requires a level of understanding of the failure mechanism that elude the designers. In this paper, we present a new, generalized approach to PHM based on two commonly available probabilistic models, Bayesian Networks and Continuous-Time Bayesian Networks, and pose the PHM problem from the perspective of risk mit-igation rather than failure prediction. We describe the tools and process for employing these tools in the hopes of motivating new ideas for investigating how best to advance PHM in the aerospace industry.","PeriodicalId":298798,"journal":{"name":"2022 IEEE AUTOTESTCON","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining Dynamic Bayesian Networks and Continuous Time Bayesian Networks for Diagnostic and Prognostic Modeling\",\"authors\":\"Jordan Schupbach, Elliott Pryor, Kyle Webster, John W. Sheppard\",\"doi\":\"10.1109/AUTOTESTCON47462.2022.9984758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of performing general prognostics and health management, especially in electronic systems, continues to present significant challenges. The low availability of failure data, makes learning generalized models difficult, and constructing generalized models during the design phase often requires a level of understanding of the failure mechanism that elude the designers. In this paper, we present a new, generalized approach to PHM based on two commonly available probabilistic models, Bayesian Networks and Continuous-Time Bayesian Networks, and pose the PHM problem from the perspective of risk mit-igation rather than failure prediction. We describe the tools and process for employing these tools in the hopes of motivating new ideas for investigating how best to advance PHM in the aerospace industry.\",\"PeriodicalId\":298798,\"journal\":{\"name\":\"2022 IEEE AUTOTESTCON\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Dynamic Bayesian Networks and Continuous Time Bayesian Networks for Diagnostic and Prognostic Modeling
The problem of performing general prognostics and health management, especially in electronic systems, continues to present significant challenges. The low availability of failure data, makes learning generalized models difficult, and constructing generalized models during the design phase often requires a level of understanding of the failure mechanism that elude the designers. In this paper, we present a new, generalized approach to PHM based on two commonly available probabilistic models, Bayesian Networks and Continuous-Time Bayesian Networks, and pose the PHM problem from the perspective of risk mit-igation rather than failure prediction. We describe the tools and process for employing these tools in the hopes of motivating new ideas for investigating how best to advance PHM in the aerospace industry.