基于主题增强嵌入、Tweet实体数据和学习排序的标签推荐

Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu, Rui Fang
{"title":"基于主题增强嵌入、Tweet实体数据和学习排序的标签推荐","authors":"Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu, Rui Fang","doi":"10.1145/2983323.2983915","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach of recommending hashtags for tweets. It uses Learning to Rank algorithm to incorporate features built from topic enhanced word embeddings, tweet entity data, hashtag frequency, hashtag temporal data and tweet URL domain information. The experiments using millions of tweets and hashtags show that the proposed approach outperforms the three baseline methods -- the LDA topic, the tf.idf based and the general word embedding approaches.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank\",\"authors\":\"Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu, Rui Fang\",\"doi\":\"10.1145/2983323.2983915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approach of recommending hashtags for tweets. It uses Learning to Rank algorithm to incorporate features built from topic enhanced word embeddings, tweet entity data, hashtag frequency, hashtag temporal data and tweet URL domain information. The experiments using millions of tweets and hashtags show that the proposed approach outperforms the three baseline methods -- the LDA topic, the tf.idf based and the general word embedding approaches.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在本文中,我们提出了一种为tweet推荐标签的新方法。它使用学习排序算法来整合从主题增强词嵌入、推文实体数据、话题标签频率、话题标签时间数据和推文URL域信息构建的功能。使用数百万条推文和标签的实验表明,所提出的方法优于三种基准方法——LDA主题、tf。基于Idf和一般词嵌入方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank
In this paper, we present a new approach of recommending hashtags for tweets. It uses Learning to Rank algorithm to incorporate features built from topic enhanced word embeddings, tweet entity data, hashtag frequency, hashtag temporal data and tweet URL domain information. The experiments using millions of tweets and hashtags show that the proposed approach outperforms the three baseline methods -- the LDA topic, the tf.idf based and the general word embedding approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信