蒙面分类与性别识别

Ahmad Hassanat, V. B. Surya Prasath, Bassam M. Al-Mahadeen, Samaher Madallah Moslem Alhasanat
{"title":"蒙面分类与性别识别","authors":"Ahmad Hassanat, V. B. Surya Prasath, Bassam M. Al-Mahadeen, Samaher Madallah Moslem Alhasanat","doi":"10.1504/IJBM.2017.10009351","DOIUrl":null,"url":null,"abstract":"This study aims to investigate to what extent a computer system can identify veiled-human and recognise gender using eyes and the uncovered part of the face. For the purpose of this study, we have created a new veiled persons image (VPI) database shot using a mobile phone camera, imaging 100 different veiled-persons over two sessions. After preprocessing and segmentation we used a fused method for feature extraction. The fusion occurs between geometrical (edge ratio) and textural (probability density function of the colour moments) features. The experimental results using different classifiers were ranging from 88:63% to 97:22% for person identification accuracy before feature selection and up to 97:55% after feature selection. The proposed method achieved up to 99:41% success rate for gender classification.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Classification and gender recognition from veiled-faces\",\"authors\":\"Ahmad Hassanat, V. B. Surya Prasath, Bassam M. Al-Mahadeen, Samaher Madallah Moslem Alhasanat\",\"doi\":\"10.1504/IJBM.2017.10009351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate to what extent a computer system can identify veiled-human and recognise gender using eyes and the uncovered part of the face. For the purpose of this study, we have created a new veiled persons image (VPI) database shot using a mobile phone camera, imaging 100 different veiled-persons over two sessions. After preprocessing and segmentation we used a fused method for feature extraction. The fusion occurs between geometrical (edge ratio) and textural (probability density function of the colour moments) features. The experimental results using different classifiers were ranging from 88:63% to 97:22% for person identification accuracy before feature selection and up to 97:55% after feature selection. The proposed method achieved up to 99:41% success rate for gender classification.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBM.2017.10009351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2017.10009351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

这项研究的目的是调查计算机系统在多大程度上可以识别蒙面人,并通过眼睛和脸部未遮盖的部分识别性别。为了本研究的目的,我们创建了一个新的蒙着面纱的人图像(VPI)数据库,使用手机相机拍摄,对100个不同的蒙着面纱的人进行了两次成像。经过预处理和分割后,采用融合的方法进行特征提取。融合发生在几何特征(边缘比)和纹理特征(颜色矩的概率密度函数)之间。使用不同分类器的实验结果,特征选择前的人识别准确率为88:63% ~ 97:22%,特征选择后的人识别准确率为97:55%。该方法的性别分类成功率高达99:41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and gender recognition from veiled-faces
This study aims to investigate to what extent a computer system can identify veiled-human and recognise gender using eyes and the uncovered part of the face. For the purpose of this study, we have created a new veiled persons image (VPI) database shot using a mobile phone camera, imaging 100 different veiled-persons over two sessions. After preprocessing and segmentation we used a fused method for feature extraction. The fusion occurs between geometrical (edge ratio) and textural (probability density function of the colour moments) features. The experimental results using different classifiers were ranging from 88:63% to 97:22% for person identification accuracy before feature selection and up to 97:55% after feature selection. The proposed method achieved up to 99:41% success rate for gender classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信