视频演示:无监督学习深度和自我运动从圆柱形全景视频

Alisha Sharma, Jonathan Ventura
{"title":"视频演示:无监督学习深度和自我运动从圆柱形全景视频","authors":"Alisha Sharma, Jonathan Ventura","doi":"10.1109/AIVR46125.2019.00059","DOIUrl":null,"url":null,"abstract":"In this demonstration, we will present a video showing depth predictions for street-level 360° panoramic footage generated using our unsupervised learning model. Panoramic depth estimation is important for a range of applications in- cluding virtual reality, 3D modeling, and autonomous robotic navigation. We have developed a convolutional neural network (CNN) model for unsupervised learning of depth and ego-motion from cylindrical panoramic video. In contrast with previous works, we focus on cylindrical panoramic projection. Unlike spherical or cube map projection, cylindrical projection is fully compatible with traditional CNN layers while still supporting a continuous 360° horizontal field of view. We find that this increased field of view improves the ego-motion prediction accuracy for street-level video input. This abstract motivates our work in unsupervised structure-from-motion estimation, describes the video demonstration, outlines our implementation, and summarizes our study conclusions.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Demo: Unsupervised Learning of Depth and Ego-Motion from Cylindrical Panoramic Video\",\"authors\":\"Alisha Sharma, Jonathan Ventura\",\"doi\":\"10.1109/AIVR46125.2019.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demonstration, we will present a video showing depth predictions for street-level 360° panoramic footage generated using our unsupervised learning model. Panoramic depth estimation is important for a range of applications in- cluding virtual reality, 3D modeling, and autonomous robotic navigation. We have developed a convolutional neural network (CNN) model for unsupervised learning of depth and ego-motion from cylindrical panoramic video. In contrast with previous works, we focus on cylindrical panoramic projection. Unlike spherical or cube map projection, cylindrical projection is fully compatible with traditional CNN layers while still supporting a continuous 360° horizontal field of view. We find that this increased field of view improves the ego-motion prediction accuracy for street-level video input. This abstract motivates our work in unsupervised structure-from-motion estimation, describes the video demonstration, outlines our implementation, and summarizes our study conclusions.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个演示中,我们将展示一个视频,展示使用我们的无监督学习模型生成的街道级360°全景镜头的深度预测。全景深度估计对于包括虚拟现实、3D建模和自主机器人导航在内的一系列应用都很重要。我们开发了一种卷积神经网络(CNN)模型,用于从圆柱形全景视频中进行深度和自我运动的无监督学习。与之前的作品不同,我们的重点是圆柱形全景投影。与球面或立方体地图投影不同,圆柱投影与传统的CNN图层完全兼容,同时仍然支持连续的360°水平视场。我们发现这种增加的视场提高了街道级视频输入的自我运动预测精度。这篇摘要激发了我们在无监督运动结构估计方面的工作,描述了视频演示,概述了我们的实现,并总结了我们的研究结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Demo: Unsupervised Learning of Depth and Ego-Motion from Cylindrical Panoramic Video
In this demonstration, we will present a video showing depth predictions for street-level 360° panoramic footage generated using our unsupervised learning model. Panoramic depth estimation is important for a range of applications in- cluding virtual reality, 3D modeling, and autonomous robotic navigation. We have developed a convolutional neural network (CNN) model for unsupervised learning of depth and ego-motion from cylindrical panoramic video. In contrast with previous works, we focus on cylindrical panoramic projection. Unlike spherical or cube map projection, cylindrical projection is fully compatible with traditional CNN layers while still supporting a continuous 360° horizontal field of view. We find that this increased field of view improves the ego-motion prediction accuracy for street-level video input. This abstract motivates our work in unsupervised structure-from-motion estimation, describes the video demonstration, outlines our implementation, and summarizes our study conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信