使用自组织映射构建具有分类器选择的集成

L. Almeida, C. Zanchettin, Hilton Pintor Bezerra Leite
{"title":"使用自组织映射构建具有分类器选择的集成","authors":"L. Almeida, C. Zanchettin, Hilton Pintor Bezerra Leite","doi":"10.1109/BRACIS.2016.087","DOIUrl":null,"url":null,"abstract":"Improving the performance of supervised classification methods is a subject of many literature works. An efficient strategy is the adoption of an ensemble of classifiers to divide the classification problem. In ensembles with classifier selection, there is no fusion of the classifiers decisions. A particular classifier is selected according to the input data instead. In this paper, well-known clustering methods based on self-organizing structures are used to implement ensembles with classifier selection. The self-organizing structures are used to detect the topological structure of data and help to divide the problem into smaller and easier sub-problems to solve. Experiments with different datasets show that the use of clustering methods to perform the classifier selection can contribute to split the problem and improve the classification accuracy compared to some traditional strategies. Additionally, the results encourage the development of more research to find out other ways to split problems using data clustering techniques.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Ensembles with Classifier Selection Using Self-Organizing Maps\",\"authors\":\"L. Almeida, C. Zanchettin, Hilton Pintor Bezerra Leite\",\"doi\":\"10.1109/BRACIS.2016.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the performance of supervised classification methods is a subject of many literature works. An efficient strategy is the adoption of an ensemble of classifiers to divide the classification problem. In ensembles with classifier selection, there is no fusion of the classifiers decisions. A particular classifier is selected according to the input data instead. In this paper, well-known clustering methods based on self-organizing structures are used to implement ensembles with classifier selection. The self-organizing structures are used to detect the topological structure of data and help to divide the problem into smaller and easier sub-problems to solve. Experiments with different datasets show that the use of clustering methods to perform the classifier selection can contribute to split the problem and improve the classification accuracy compared to some traditional strategies. Additionally, the results encourage the development of more research to find out other ways to split problems using data clustering techniques.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

改进监督分类方法的性能是许多文献研究的主题。一种有效的策略是采用分类器集合来划分分类问题。在分类器选择的集成系统中,分类器的决策没有融合。而是根据输入数据选择一个特定的分类器。本文采用基于自组织结构的聚类方法来实现具有分类器选择的集成。自组织结构用于检测数据的拓扑结构,并有助于将问题划分为更小、更容易解决的子问题。在不同数据集上的实验表明,与传统的分类策略相比,使用聚类方法进行分类器选择有助于将问题分解,提高分类精度。此外,这些结果鼓励开展更多的研究,以找到使用数据聚类技术拆分问题的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building Ensembles with Classifier Selection Using Self-Organizing Maps
Improving the performance of supervised classification methods is a subject of many literature works. An efficient strategy is the adoption of an ensemble of classifiers to divide the classification problem. In ensembles with classifier selection, there is no fusion of the classifiers decisions. A particular classifier is selected according to the input data instead. In this paper, well-known clustering methods based on self-organizing structures are used to implement ensembles with classifier selection. The self-organizing structures are used to detect the topological structure of data and help to divide the problem into smaller and easier sub-problems to solve. Experiments with different datasets show that the use of clustering methods to perform the classifier selection can contribute to split the problem and improve the classification accuracy compared to some traditional strategies. Additionally, the results encourage the development of more research to find out other ways to split problems using data clustering techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信