Denys Proux, Claude Roux, Ágnes Sándor, Julien Perez
{"title":"混合特征因子系统评分提取通道相关性在监管文件","authors":"Denys Proux, Claude Roux, Ágnes Sándor, Julien Perez","doi":"10.1145/3077240.3077251","DOIUrl":null,"url":null,"abstract":"We report in this paper our contribution to the FEIII 2017 challenge addressing relevance ranking of passages extracted from 10-K and 10-Q regulatory filings. We leveraged our previous work on document structure and content analysis for regulatory filings to train hybrid text analytics and decision making models. We designed and trained several layers of classifiers fed with linguistic and semantic features to improve relevance prediction. We discuss in this paper our experiments and results on the competition data set.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Feature Factored System for Scoring Extracted Passage Relevance in Regulatory Filings\",\"authors\":\"Denys Proux, Claude Roux, Ágnes Sándor, Julien Perez\",\"doi\":\"10.1145/3077240.3077251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report in this paper our contribution to the FEIII 2017 challenge addressing relevance ranking of passages extracted from 10-K and 10-Q regulatory filings. We leveraged our previous work on document structure and content analysis for regulatory filings to train hybrid text analytics and decision making models. We designed and trained several layers of classifiers fed with linguistic and semantic features to improve relevance prediction. We discuss in this paper our experiments and results on the competition data set.\",\"PeriodicalId\":326424,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077240.3077251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Feature Factored System for Scoring Extracted Passage Relevance in Regulatory Filings
We report in this paper our contribution to the FEIII 2017 challenge addressing relevance ranking of passages extracted from 10-K and 10-Q regulatory filings. We leveraged our previous work on document structure and content analysis for regulatory filings to train hybrid text analytics and decision making models. We designed and trained several layers of classifiers fed with linguistic and semantic features to improve relevance prediction. We discuss in this paper our experiments and results on the competition data set.