{"title":"高性能混凝土配合比","authors":"K. Sobolev, S. Soboleva","doi":"10.14359/6053","DOIUrl":null,"url":null,"abstract":"The report generalizes the results of wide range investigations of silica fume based superplasticized high-performance concrete. The rules of the strength and rheological behavior of cement - silica fume - superplasticizer systems are discussed. Usage of optimal superplasticizer to silica fume ratio (as 1:10) allows to obtain ultra-dense packing for super fluid cement paste and provides high-performance properties of concrete. The mathematical models of fresh and hardened high-performance concrete based on processing and computerizing empirical results are created. The models provide a calculation of water/cement ratio required for the target compressive strength level up to 130 MPa as well as mixing water quantity for planning slump of 0-200 mm. For modelling purpose, concrete slump is considered as a function of aggregates proportioning, and volume and fluidity of cement paste. This approach became a basis of proposed high-performance concrete mixture proportioning method. Further, developing and integration of the mathematical models created a new computer program for high-performance concrete mixture proportioning. The program provides a solution for wide range design and optimization projects. The results of the computer program estimation can be easily transferred to any 3-dimensional plotting or data base program for consequent processing and performing.","PeriodicalId":255305,"journal":{"name":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High-Performance Concrete Mixture Proportioning\",\"authors\":\"K. Sobolev, S. Soboleva\",\"doi\":\"10.14359/6053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The report generalizes the results of wide range investigations of silica fume based superplasticized high-performance concrete. The rules of the strength and rheological behavior of cement - silica fume - superplasticizer systems are discussed. Usage of optimal superplasticizer to silica fume ratio (as 1:10) allows to obtain ultra-dense packing for super fluid cement paste and provides high-performance properties of concrete. The mathematical models of fresh and hardened high-performance concrete based on processing and computerizing empirical results are created. The models provide a calculation of water/cement ratio required for the target compressive strength level up to 130 MPa as well as mixing water quantity for planning slump of 0-200 mm. For modelling purpose, concrete slump is considered as a function of aggregates proportioning, and volume and fluidity of cement paste. This approach became a basis of proposed high-performance concrete mixture proportioning method. Further, developing and integration of the mathematical models created a new computer program for high-performance concrete mixture proportioning. The program provides a solution for wide range design and optimization projects. The results of the computer program estimation can be easily transferred to any 3-dimensional plotting or data base program for consequent processing and performing.\",\"PeriodicalId\":255305,\"journal\":{\"name\":\"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/6053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The report generalizes the results of wide range investigations of silica fume based superplasticized high-performance concrete. The rules of the strength and rheological behavior of cement - silica fume - superplasticizer systems are discussed. Usage of optimal superplasticizer to silica fume ratio (as 1:10) allows to obtain ultra-dense packing for super fluid cement paste and provides high-performance properties of concrete. The mathematical models of fresh and hardened high-performance concrete based on processing and computerizing empirical results are created. The models provide a calculation of water/cement ratio required for the target compressive strength level up to 130 MPa as well as mixing water quantity for planning slump of 0-200 mm. For modelling purpose, concrete slump is considered as a function of aggregates proportioning, and volume and fluidity of cement paste. This approach became a basis of proposed high-performance concrete mixture proportioning method. Further, developing and integration of the mathematical models created a new computer program for high-performance concrete mixture proportioning. The program provides a solution for wide range design and optimization projects. The results of the computer program estimation can be easily transferred to any 3-dimensional plotting or data base program for consequent processing and performing.