基于gpu的五轴侧铣刀路规划优化

H. Hsieh, C. Chu
{"title":"基于gpu的五轴侧铣刀路规划优化","authors":"H. Hsieh, C. Chu","doi":"10.1109/ICMA.2010.31","DOIUrl":null,"url":null,"abstract":"5-axis machining technology has received much attention since the late 90’s. It offers better machining efficiency and superior shaping capability compared with 3-axis machining. Machining error control is considered to be a challenging task in 5-axis flank milling of complex geometries. Previous studies have shown that optimized tool path planning is a feasible approach to reduction of the machining error. However, the error estimation is very time-consuming in the optimization process, thus limiting the practicality of the approach. In this work, we apply GPU computing technology to solve this problem. A PSO-based optimization scheme is developed to generate a series of cutter locations corresponding to a globally minimized machining error. The error induced by each cutter location is simultaneously calculated by the parallel processing units in GPU. This significantly accelerates the search process in the optimization scheme, while the optimal solution remains the same as that obtained by CPU. Our test result demonstrates the potential of improving the computational efficiency in CAD/CAM using GPU.","PeriodicalId":233469,"journal":{"name":"2010 International Conference on Manufacturing Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GPU-based Optimization of Tool Path Planning in 5-Axis Flank Milling\",\"authors\":\"H. Hsieh, C. Chu\",\"doi\":\"10.1109/ICMA.2010.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5-axis machining technology has received much attention since the late 90’s. It offers better machining efficiency and superior shaping capability compared with 3-axis machining. Machining error control is considered to be a challenging task in 5-axis flank milling of complex geometries. Previous studies have shown that optimized tool path planning is a feasible approach to reduction of the machining error. However, the error estimation is very time-consuming in the optimization process, thus limiting the practicality of the approach. In this work, we apply GPU computing technology to solve this problem. A PSO-based optimization scheme is developed to generate a series of cutter locations corresponding to a globally minimized machining error. The error induced by each cutter location is simultaneously calculated by the parallel processing units in GPU. This significantly accelerates the search process in the optimization scheme, while the optimal solution remains the same as that obtained by CPU. Our test result demonstrates the potential of improving the computational efficiency in CAD/CAM using GPU.\",\"PeriodicalId\":233469,\"journal\":{\"name\":\"2010 International Conference on Manufacturing Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Manufacturing Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2010.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Manufacturing Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2010.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自上世纪90年代末以来,五轴加工技术受到了广泛的关注。与三轴加工相比,具有更高的加工效率和更强的成形能力。在复杂几何形状的五轴侧铣削加工中,加工误差控制一直是一项具有挑战性的任务。以往的研究表明,优化刀具轨迹规划是减小加工误差的可行方法。然而,在优化过程中,误差估计非常耗时,从而限制了该方法的实用性。在这项工作中,我们应用GPU计算技术来解决这个问题。提出了一种基于粒子群算法的优化方案,生成一系列刀具位置,使加工误差全局最小化。每个刀具位置引起的误差由GPU中的并行处理单元同时计算。这大大加快了优化方案的搜索过程,同时最优解与CPU得到的解保持一致。我们的测试结果证明了使用GPU提高CAD/CAM计算效率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-based Optimization of Tool Path Planning in 5-Axis Flank Milling
5-axis machining technology has received much attention since the late 90’s. It offers better machining efficiency and superior shaping capability compared with 3-axis machining. Machining error control is considered to be a challenging task in 5-axis flank milling of complex geometries. Previous studies have shown that optimized tool path planning is a feasible approach to reduction of the machining error. However, the error estimation is very time-consuming in the optimization process, thus limiting the practicality of the approach. In this work, we apply GPU computing technology to solve this problem. A PSO-based optimization scheme is developed to generate a series of cutter locations corresponding to a globally minimized machining error. The error induced by each cutter location is simultaneously calculated by the parallel processing units in GPU. This significantly accelerates the search process in the optimization scheme, while the optimal solution remains the same as that obtained by CPU. Our test result demonstrates the potential of improving the computational efficiency in CAD/CAM using GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信