一种具有线性记忆和时间约束的分割和目标提取算法

R. S. Anbalagan, G. Hu, Anil K. Jain
{"title":"一种具有线性记忆和时间约束的分割和目标提取算法","authors":"R. S. Anbalagan, G. Hu, Anil K. Jain","doi":"10.1109/ICPR.1988.28302","DOIUrl":null,"url":null,"abstract":"An experimental segmentation and object extraction algorithm is described. The system was developed for medical image processing with the primary application being DNA (deoxyribonucleic acid) sequencing. A typical DNA sequencing can involve processing the image of an autodiagram of size 14*17 inches resulting in a 2048*8600 digitized image under the specified spatial resolutions. The digitized image is too big to manage, even using super-minicomputers such as DEC VAX 11/780, and to perform any amount of classical image processing. Therefore, an elegant hardware and software design is necessary to deal with the large image and to complete the image-understanding task in an efficient manner. This work focuses on the image-processing aspects of the system and describes the run-length image representation, a link list data structure, a heuristic connected component analysis algorithm based on the data structure, a primitive object segmentation algorithm, and feature extraction.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A segmentation and object extraction algorithm with linear memory and time constraints\",\"authors\":\"R. S. Anbalagan, G. Hu, Anil K. Jain\",\"doi\":\"10.1109/ICPR.1988.28302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental segmentation and object extraction algorithm is described. The system was developed for medical image processing with the primary application being DNA (deoxyribonucleic acid) sequencing. A typical DNA sequencing can involve processing the image of an autodiagram of size 14*17 inches resulting in a 2048*8600 digitized image under the specified spatial resolutions. The digitized image is too big to manage, even using super-minicomputers such as DEC VAX 11/780, and to perform any amount of classical image processing. Therefore, an elegant hardware and software design is necessary to deal with the large image and to complete the image-understanding task in an efficient manner. This work focuses on the image-processing aspects of the system and describes the run-length image representation, a link list data structure, a heuristic connected component analysis algorithm based on the data structure, a primitive object segmentation algorithm, and feature extraction.<<ETX>>\",\"PeriodicalId\":314236,\"journal\":{\"name\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1988.28302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述了一种实验分割和目标提取算法。该系统是为医学图像处理开发的,主要应用是DNA(脱氧核糖核酸)测序。典型的DNA测序可能涉及处理尺寸为14*17英寸的自动图图像,从而在指定的空间分辨率下生成2048*8600的数字化图像。数字化图像太大,即使使用DEC VAX 11/780这样的超小型计算机也无法管理,并且无法执行任何数量的经典图像处理。因此,为了处理大图像,高效地完成图像理解任务,需要一个优雅的硬件和软件设计。这项工作侧重于系统的图像处理方面,并描述了图像的行程长度表示、链表数据结构、基于数据结构的启发式连接成分分析算法、原始对象分割算法和特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A segmentation and object extraction algorithm with linear memory and time constraints
An experimental segmentation and object extraction algorithm is described. The system was developed for medical image processing with the primary application being DNA (deoxyribonucleic acid) sequencing. A typical DNA sequencing can involve processing the image of an autodiagram of size 14*17 inches resulting in a 2048*8600 digitized image under the specified spatial resolutions. The digitized image is too big to manage, even using super-minicomputers such as DEC VAX 11/780, and to perform any amount of classical image processing. Therefore, an elegant hardware and software design is necessary to deal with the large image and to complete the image-understanding task in an efficient manner. This work focuses on the image-processing aspects of the system and describes the run-length image representation, a link list data structure, a heuristic connected component analysis algorithm based on the data structure, a primitive object segmentation algorithm, and feature extraction.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信