关于四维酉角矩阵的恒等问题

Rui-Tao Dong
{"title":"关于四维酉角矩阵的恒等问题","authors":"Rui-Tao Dong","doi":"10.4230/LIPIcs.MFCS.2022.43","DOIUrl":null,"url":null,"abstract":"We show that the Identity Problem is decidable in polynomial time for finitely generated sub-semigroups of the group $\\mathsf{UT}(4, \\mathbb{Z})$ of $4 \\times 4$ unitriangular integer matrices. As a byproduct of our proof, we also show the polynomial-time decidability of several subset reachability problems in $\\mathsf{UT}(4, \\mathbb{Z})$.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"32 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Identity Problem for Unitriangular Matrices of Dimension Four\",\"authors\":\"Rui-Tao Dong\",\"doi\":\"10.4230/LIPIcs.MFCS.2022.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Identity Problem is decidable in polynomial time for finitely generated sub-semigroups of the group $\\\\mathsf{UT}(4, \\\\mathbb{Z})$ of $4 \\\\times 4$ unitriangular integer matrices. As a byproduct of our proof, we also show the polynomial-time decidability of several subset reachability problems in $\\\\mathsf{UT}(4, \\\\mathbb{Z})$.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"32 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2022.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2022.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了$ $4 \乘以4$一元三角形整数矩阵$\mathsf{UT}(4, \mathbb{Z})$群的有限生成子半群的恒等问题在多项式时间内是可判定的。作为我们证明的副产品,我们还证明了$\mathsf{UT}(4, \mathbb{Z})$中几个子集可达性问题的多项式时间可判定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Identity Problem for Unitriangular Matrices of Dimension Four
We show that the Identity Problem is decidable in polynomial time for finitely generated sub-semigroups of the group $\mathsf{UT}(4, \mathbb{Z})$ of $4 \times 4$ unitriangular integer matrices. As a byproduct of our proof, we also show the polynomial-time decidability of several subset reachability problems in $\mathsf{UT}(4, \mathbb{Z})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信