用加速度计评估中风后即刻上肢运动功能

Mackenzie Wallich, K. Lai, S. Yanushkevich
{"title":"用加速度计评估中风后即刻上肢运动功能","authors":"Mackenzie Wallich, K. Lai, S. Yanushkevich","doi":"10.1109/CAI54212.2023.00064","DOIUrl":null,"url":null,"abstract":"Accelerometry has been extensively studied as an objective means of measuring upper limb function in patients post-stroke. The objective of this paper is to determine whether the accelerometry-derived measurements frequently used in more long-term rehabilitation studies can also be used to monitor and rapidly detect sudden changes in upper limb motor function in more recently hospitalized stroke patients. Six binary classification models were created by training on variable data window times of paretic upper limb accelerometer feature data. The models were assessed on their effectiveness for differentiating new input data into two classes: severe or moderately severe motor function. The classification models yielded Area Under the Curve (AUC) scores that ranged from 0.72 to 0.82 for 15-minute data windows to 0.77 to 0.94 for 120-minute data windows. These results served as a preliminary assessment and a basis on which to further investigate the efficacy of using accelerometry and machine learning to alert healthcare professionals to rapid changes in motor function in the days immediately following a stroke.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Upper Limb Motor Function in the Immediate Post-Stroke Period Using Accelerometry\",\"authors\":\"Mackenzie Wallich, K. Lai, S. Yanushkevich\",\"doi\":\"10.1109/CAI54212.2023.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerometry has been extensively studied as an objective means of measuring upper limb function in patients post-stroke. The objective of this paper is to determine whether the accelerometry-derived measurements frequently used in more long-term rehabilitation studies can also be used to monitor and rapidly detect sudden changes in upper limb motor function in more recently hospitalized stroke patients. Six binary classification models were created by training on variable data window times of paretic upper limb accelerometer feature data. The models were assessed on their effectiveness for differentiating new input data into two classes: severe or moderately severe motor function. The classification models yielded Area Under the Curve (AUC) scores that ranged from 0.72 to 0.82 for 15-minute data windows to 0.77 to 0.94 for 120-minute data windows. These results served as a preliminary assessment and a basis on which to further investigate the efficacy of using accelerometry and machine learning to alert healthcare professionals to rapid changes in motor function in the days immediately following a stroke.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

加速度计作为一种测量脑卒中后患者上肢功能的客观手段已被广泛研究。本文的目的是确定长期康复研究中经常使用的加速度计衍生测量是否也可用于监测和快速检测最近住院的中风患者上肢运动功能的突然变化。通过对麻痹上肢加速度计特征数据的可变数据窗口时间进行训练,建立了6个二值分类模型。对这些模型的有效性进行了评估,以区分新输入数据分为两类:严重或中度严重的运动功能。分类模型得出的曲线下面积(AUC)评分范围为0.72 - 0.82,15分钟数据窗口为0.77 - 0.94,120分钟数据窗口为0.77 - 0.94。这些结果作为初步评估和进一步研究使用加速度计和机器学习提醒医疗保健专业人员在中风后几天内运动功能快速变化的有效性的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Upper Limb Motor Function in the Immediate Post-Stroke Period Using Accelerometry
Accelerometry has been extensively studied as an objective means of measuring upper limb function in patients post-stroke. The objective of this paper is to determine whether the accelerometry-derived measurements frequently used in more long-term rehabilitation studies can also be used to monitor and rapidly detect sudden changes in upper limb motor function in more recently hospitalized stroke patients. Six binary classification models were created by training on variable data window times of paretic upper limb accelerometer feature data. The models were assessed on their effectiveness for differentiating new input data into two classes: severe or moderately severe motor function. The classification models yielded Area Under the Curve (AUC) scores that ranged from 0.72 to 0.82 for 15-minute data windows to 0.77 to 0.94 for 120-minute data windows. These results served as a preliminary assessment and a basis on which to further investigate the efficacy of using accelerometry and machine learning to alert healthcare professionals to rapid changes in motor function in the days immediately following a stroke.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信