利用层次激活神经网络进行图像检索

Ying Li, Xiangwei Kong, Liang Zheng, Q. Tian
{"title":"利用层次激活神经网络进行图像检索","authors":"Ying Li, Xiangwei Kong, Liang Zheng, Q. Tian","doi":"10.1145/2964284.2967197","DOIUrl":null,"url":null,"abstract":"The Convolutional Neural Networks (CNNs) have achieved breakthroughs on several image retrieval benchmarks. Most previous works re-formulate CNNs as global feature extractors used for linear scan. This paper proposes a Multi-layer Orderless Fusion (MOF) approach to integrate the activations of CNN in the Bag-of-Words (BoW) framework. Specifically, through only one forward pass in the network, we extract multi-layer CNN activations of local patches. Activations from each layer are aggregated in one BoW model, and several BoW models are combined with late fusion. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Exploiting Hierarchical Activations of Neural Network for Image Retrieval\",\"authors\":\"Ying Li, Xiangwei Kong, Liang Zheng, Q. Tian\",\"doi\":\"10.1145/2964284.2967197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Convolutional Neural Networks (CNNs) have achieved breakthroughs on several image retrieval benchmarks. Most previous works re-formulate CNNs as global feature extractors used for linear scan. This paper proposes a Multi-layer Orderless Fusion (MOF) approach to integrate the activations of CNN in the Bag-of-Words (BoW) framework. Specifically, through only one forward pass in the network, we extract multi-layer CNN activations of local patches. Activations from each layer are aggregated in one BoW model, and several BoW models are combined with late fusion. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":140670,\"journal\":{\"name\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2964284.2967197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

卷积神经网络(cnn)在几个图像检索基准上取得了突破。大多数先前的工作将cnn重新定义为用于线性扫描的全局特征提取器。本文提出了一种多层有序融合(MOF)方法,将CNN的激活信息整合到词袋(BoW)框架中。具体来说,我们只需要在网络中进行一次前向传递,就可以提取出局部patch的多层CNN激活。每一层的激活被聚合到一个BoW模型中,多个BoW模型结合后期融合。在两个基准数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Hierarchical Activations of Neural Network for Image Retrieval
The Convolutional Neural Networks (CNNs) have achieved breakthroughs on several image retrieval benchmarks. Most previous works re-formulate CNNs as global feature extractors used for linear scan. This paper proposes a Multi-layer Orderless Fusion (MOF) approach to integrate the activations of CNN in the Bag-of-Words (BoW) framework. Specifically, through only one forward pass in the network, we extract multi-layer CNN activations of local patches. Activations from each layer are aggregated in one BoW model, and several BoW models are combined with late fusion. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信