一种MAX-SAT和加权MAX-SAT的分支割算法

S. Joy, J. Mitchell, B. Borchers
{"title":"一种MAX-SAT和加权MAX-SAT的分支割算法","authors":"S. Joy, J. Mitchell, B. Borchers","doi":"10.1090/dimacs/035/13","DOIUrl":null,"url":null,"abstract":"DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceVolume00, 19xxA Branch and Cut Algorithm for MAX-SAT and WeightedMAX-SATSteveJoy, John Mitchell, and Brian BorchersAbstract.We describ e a branch and cut algorithm for b oth MAX-SAT andweighted MAX-SAT. This algorithm uses the GSAT pro cedure as a primalheuristic. At eachnode we solve a linear programming (LP) relaxation of theproblem. Twostyles of separating cuts are added: resolution cuts and o ddcycle inequalities.We compare our algorithm to an extension of the Davis Putnam Love-land (EDPL) algorithm. Our algorithm is more e ective than EDPL on someproblems, notably MAX-2-SAT. EDPL is more e ective on some other classesof problems.1. Intro ductionThe satis ability problem (SAT) is a problem in prop ositional logic. A logicformula consists of the conjunction of clauses. Each clause consists of a disjunctionof literals. Each literal is a variable or its negation. The SAT problem seeks to ndan assignment to the variables which satis es the logic formula, or an indicationthat no such assignment exists. The satis ability problem is NP-complete [5].There are a numb er of exact algorithms for the satis ability problem. Theseinclude Davis-Putnam-Loveland [4,23], resolution [26], and integer programmingapproaches [1,16, 18, 20,21]. A numb er of heuristics that use randomizationalso exist; the rst randomized lo cal search algorithm for satis abilitywas due toGu [9, 10, 11, 12]. Other algorithms include the GSAT heuristic [29, 30] and theGRASP heuristic [25]. For surveys of algorithms for SAT problems see [13,14].In this pap er weinvestigate the related MAX-SAT problem. Given a collectionof clauses, we seek a variable assignment that maximizes the numb er of satis edclauses. The weighted MAX-SAT problem assigns a wt to each clause, and seeksan assignment that maximizes the sum of the weights of the satis ed clauses. Bothof these problems are NP-hard. It is p ossible to approximate MAX-SAT within afactor of 1.325 in p olynomial time [6].Most SAT heuristics have b een extended to MAX-SAT. Several heuristics forMAX-SAT are summarized in Hansen and Jaumard [15]. The GSAT heuristic hasalso b een extended to weighted MAX-SAT[22].1991Mathematics Subject Classi cation.03B05, 49M35, 65K05, 90C10.Research supp orted by ONR Grant N00014{94{1{0391 to Rensselaer Polytechnic Institute.c0000 American Mathematical So ciety1052-1798/00 $1.00 + $.25 p er page1","PeriodicalId":434373,"journal":{"name":"Satisfiability Problem: Theory and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A branch and cut algorithm for MAX-SAT and weighted MAX-SAT\",\"authors\":\"S. Joy, J. Mitchell, B. Borchers\",\"doi\":\"10.1090/dimacs/035/13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceVolume00, 19xxA Branch and Cut Algorithm for MAX-SAT and WeightedMAX-SATSteveJoy, John Mitchell, and Brian BorchersAbstract.We describ e a branch and cut algorithm for b oth MAX-SAT andweighted MAX-SAT. This algorithm uses the GSAT pro cedure as a primalheuristic. At eachnode we solve a linear programming (LP) relaxation of theproblem. Twostyles of separating cuts are added: resolution cuts and o ddcycle inequalities.We compare our algorithm to an extension of the Davis Putnam Love-land (EDPL) algorithm. Our algorithm is more e ective than EDPL on someproblems, notably MAX-2-SAT. EDPL is more e ective on some other classesof problems.1. Intro ductionThe satis ability problem (SAT) is a problem in prop ositional logic. A logicformula consists of the conjunction of clauses. Each clause consists of a disjunctionof literals. Each literal is a variable or its negation. The SAT problem seeks to ndan assignment to the variables which satis es the logic formula, or an indicationthat no such assignment exists. The satis ability problem is NP-complete [5].There are a numb er of exact algorithms for the satis ability problem. Theseinclude Davis-Putnam-Loveland [4,23], resolution [26], and integer programmingapproaches [1,16, 18, 20,21]. A numb er of heuristics that use randomizationalso exist; the rst randomized lo cal search algorithm for satis abilitywas due toGu [9, 10, 11, 12]. Other algorithms include the GSAT heuristic [29, 30] and theGRASP heuristic [25]. For surveys of algorithms for SAT problems see [13,14].In this pap er weinvestigate the related MAX-SAT problem. Given a collectionof clauses, we seek a variable assignment that maximizes the numb er of satis edclauses. The weighted MAX-SAT problem assigns a wt to each clause, and seeksan assignment that maximizes the sum of the weights of the satis ed clauses. Bothof these problems are NP-hard. It is p ossible to approximate MAX-SAT within afactor of 1.325 in p olynomial time [6].Most SAT heuristics have b een extended to MAX-SAT. Several heuristics forMAX-SAT are summarized in Hansen and Jaumard [15]. The GSAT heuristic hasalso b een extended to weighted MAX-SAT[22].1991Mathematics Subject Classi cation.03B05, 49M35, 65K05, 90C10.Research supp orted by ONR Grant N00014{94{1{0391 to Rensselaer Polytechnic Institute.c0000 American Mathematical So ciety1052-1798/00 $1.00 + $.25 p er page1\",\"PeriodicalId\":434373,\"journal\":{\"name\":\"Satisfiability Problem: Theory and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Satisfiability Problem: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/035/13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satisfiability Problem: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/035/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

DIMACS系列在离散数学和理论计算机科学中的应用[j], [j], [j]。我们描述了一种同时适用于MAX-SAT和加权MAX-SAT的分支割算法。该算法使用GSAT程序作为原始启发式算法。在每个节点上,我们求解一个线性规划(LP)松弛问题。添加了两种类型的分离切割:分辨率切割和零循环不等式。我们将我们的算法与Davis Putnam Love-land (EDPL)算法的扩展进行比较。我们的算法在某些问题上比EDPL更有效,特别是MAX-2-SAT。EDPL在其他一些类型的问题上更有效。满足能力问题(SAT)是命题逻辑中的一个问题。逻辑公式由子句的连词组成。每个子句由字面的析取组成。每个字面值是一个变量或它的否定。SAT问题寻求对满足逻辑公式的变量进行赋值,或者表明不存在这样的赋值。满足能力问题是np完全的[5]。对于满足能力问题,有许多精确的算法。这些方法包括Davis-Putnam-Loveland[4,23]、resolution[26]和整数规划方法[1,16,18,20,21]。也存在大量使用随机化的启发式方法;第一个满足能力的随机局部搜索算法是由gu提出的[9,10,11,12]。其他算法包括GSAT启发式算法[29,30]和grasp启发式算法[25]。关于SAT问题算法的调查见[13,14]。在本文中,我们研究了相关的MAX-SAT问题。给定一个子句集合,我们寻求一个变量赋值,使满足子句的个数最大化。加权MAX-SAT问题为每个子句分配一个wt,并寻求使满足子句的权重总和最大化的分配。这两个问题都是np困难的。在p个多项式时间内,在因子1.325内近似MAX-SAT是可能的[6]。大多数SAT启发式已经扩展到MAX-SAT。Hansen和Jaumard[15]总结了几种启发式forMAX-SAT。GSAT启发式也被扩展到加权MAX-SAT[22]。1991年数学学科分类。03b05, 49m35, 65k05, 90c10。研究由美国国家研究基金会N00014{94{1{0391资助伦斯勒理工学院。美国数学学会1052-1798/00 $1.00 + $。每页25便士
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A branch and cut algorithm for MAX-SAT and weighted MAX-SAT
DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceVolume00, 19xxA Branch and Cut Algorithm for MAX-SAT and WeightedMAX-SATSteveJoy, John Mitchell, and Brian BorchersAbstract.We describ e a branch and cut algorithm for b oth MAX-SAT andweighted MAX-SAT. This algorithm uses the GSAT pro cedure as a primalheuristic. At eachnode we solve a linear programming (LP) relaxation of theproblem. Twostyles of separating cuts are added: resolution cuts and o ddcycle inequalities.We compare our algorithm to an extension of the Davis Putnam Love-land (EDPL) algorithm. Our algorithm is more e ective than EDPL on someproblems, notably MAX-2-SAT. EDPL is more e ective on some other classesof problems.1. Intro ductionThe satis ability problem (SAT) is a problem in prop ositional logic. A logicformula consists of the conjunction of clauses. Each clause consists of a disjunctionof literals. Each literal is a variable or its negation. The SAT problem seeks to ndan assignment to the variables which satis es the logic formula, or an indicationthat no such assignment exists. The satis ability problem is NP-complete [5].There are a numb er of exact algorithms for the satis ability problem. Theseinclude Davis-Putnam-Loveland [4,23], resolution [26], and integer programmingapproaches [1,16, 18, 20,21]. A numb er of heuristics that use randomizationalso exist; the rst randomized lo cal search algorithm for satis abilitywas due toGu [9, 10, 11, 12]. Other algorithms include the GSAT heuristic [29, 30] and theGRASP heuristic [25]. For surveys of algorithms for SAT problems see [13,14].In this pap er weinvestigate the related MAX-SAT problem. Given a collectionof clauses, we seek a variable assignment that maximizes the numb er of satis edclauses. The weighted MAX-SAT problem assigns a wt to each clause, and seeksan assignment that maximizes the sum of the weights of the satis ed clauses. Bothof these problems are NP-hard. It is p ossible to approximate MAX-SAT within afactor of 1.325 in p olynomial time [6].Most SAT heuristics have b een extended to MAX-SAT. Several heuristics forMAX-SAT are summarized in Hansen and Jaumard [15]. The GSAT heuristic hasalso b een extended to weighted MAX-SAT[22].1991Mathematics Subject Classi cation.03B05, 49M35, 65K05, 90C10.Research supp orted by ONR Grant N00014{94{1{0391 to Rensselaer Polytechnic Institute.c0000 American Mathematical So ciety1052-1798/00 $1.00 + $.25 p er page1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信