基于支持向量机的微波乳腺肿瘤分类

Ang Chen, Yuzhuo Gu, Songchun Zhang
{"title":"基于支持向量机的微波乳腺肿瘤分类","authors":"Ang Chen, Yuzhuo Gu, Songchun Zhang","doi":"10.1109/icphds53608.2021.00042","DOIUrl":null,"url":null,"abstract":"This paper presents the feasibility of the benign and malignant breast tumor classification according to dielectric properties. The experiment data are obtained by simulating the human breast with the help of COMSOL Multiphysics, in which way electric field amplitude of different samples is collected. Support Vector Machines (SVM) is utilized to analyze the microwave signal and distinguish benign and malignant breast tumors. The capability and reliability of classification are compared with Decision Tree and Random Forest.","PeriodicalId":108827,"journal":{"name":"2021 International Conference on Public Health and Data Science (ICPHDS)","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVM-Based Microwave Breast Tumour Classification\",\"authors\":\"Ang Chen, Yuzhuo Gu, Songchun Zhang\",\"doi\":\"10.1109/icphds53608.2021.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the feasibility of the benign and malignant breast tumor classification according to dielectric properties. The experiment data are obtained by simulating the human breast with the help of COMSOL Multiphysics, in which way electric field amplitude of different samples is collected. Support Vector Machines (SVM) is utilized to analyze the microwave signal and distinguish benign and malignant breast tumors. The capability and reliability of classification are compared with Decision Tree and Random Forest.\",\"PeriodicalId\":108827,\"journal\":{\"name\":\"2021 International Conference on Public Health and Data Science (ICPHDS)\",\"volume\":\"18 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Public Health and Data Science (ICPHDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icphds53608.2021.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Public Health and Data Science (ICPHDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icphds53608.2021.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了根据介电性质对乳腺肿瘤进行良恶性分类的可行性。利用COMSOL Multiphysics软件模拟人体乳房获得实验数据,采集不同样品的电场幅值。利用支持向量机(SVM)对微波信号进行分析,区分乳腺肿瘤的良恶性。比较了决策树和随机森林的分类能力和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM-Based Microwave Breast Tumour Classification
This paper presents the feasibility of the benign and malignant breast tumor classification according to dielectric properties. The experiment data are obtained by simulating the human breast with the help of COMSOL Multiphysics, in which way electric field amplitude of different samples is collected. Support Vector Machines (SVM) is utilized to analyze the microwave signal and distinguish benign and malignant breast tumors. The capability and reliability of classification are compared with Decision Tree and Random Forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信