当前以电子学习为中心的推荐系统和学习分析中使用的学生监控技术综述。经验API和LIME模型案例研究

A. Corbí, D. Burgos
{"title":"当前以电子学习为中心的推荐系统和学习分析中使用的学生监控技术综述。经验API和LIME模型案例研究","authors":"A. Corbí, D. Burgos","doi":"10.9781/ijimai.2014.276","DOIUrl":null,"url":null,"abstract":"Recommender systems require input information in order to properly operate and deliver content or behaviour suggestions to end users. eLearning scenarios are no exception. Users are current students and recommendations can be built upon paths (both formal and informal), relationships, behaviours, friends, followers, actions, grades, tutor interaction, etc. A recommender system must somehow retrieve, categorize and work with all these details. There are several ways to do so: from raw and inelegant database access to more curated web APIs or even via HTML scrapping. New server-centric user-action logging and monitoring standard technologies have been presented in past years by several groups, organizations and standard bodies. The Experience API (xAPI), detailed in this article, is one of these. In the first part of this paper we analyse current learner-monitoring techniques as an initialization phase for eLearning recommender systems. We next review standardization efforts in this area; finally, we focus on xAPI and the potential interaction with the LIME model, which will be also summarized below.","PeriodicalId":143152,"journal":{"name":"Int. J. Interact. Multim. Artif. Intell.","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Review of Current Student-Monitoring Techniques used in eLearning-Focused recommender Systems and Learning analytics. The Experience API & LIME model Case Study\",\"authors\":\"A. Corbí, D. Burgos\",\"doi\":\"10.9781/ijimai.2014.276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems require input information in order to properly operate and deliver content or behaviour suggestions to end users. eLearning scenarios are no exception. Users are current students and recommendations can be built upon paths (both formal and informal), relationships, behaviours, friends, followers, actions, grades, tutor interaction, etc. A recommender system must somehow retrieve, categorize and work with all these details. There are several ways to do so: from raw and inelegant database access to more curated web APIs or even via HTML scrapping. New server-centric user-action logging and monitoring standard technologies have been presented in past years by several groups, organizations and standard bodies. The Experience API (xAPI), detailed in this article, is one of these. In the first part of this paper we analyse current learner-monitoring techniques as an initialization phase for eLearning recommender systems. We next review standardization efforts in this area; finally, we focus on xAPI and the potential interaction with the LIME model, which will be also summarized below.\",\"PeriodicalId\":143152,\"journal\":{\"name\":\"Int. J. Interact. Multim. Artif. Intell.\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Interact. Multim. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2014.276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Multim. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2014.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

推荐系统需要输入信息,以便正确操作并向最终用户提供内容或行为建议。电子学习场景也不例外。用户是当前的学生,推荐可以建立在路径(正式和非正式)、关系、行为、朋友、追随者、行动、成绩、导师互动等基础上。推荐系统必须以某种方式检索、分类并处理所有这些细节。有几种方法可以做到这一点:从原始和不美观的数据库访问到更精心策划的web api,甚至通过HTML废弃。在过去的几年中,一些小组、组织和标准团体提出了新的以服务器为中心的用户操作日志记录和监视标准技术。本文详细介绍的Experience API (xAPI)就是其中之一。在本文的第一部分,我们分析了作为电子学习推荐系统初始化阶段的当前学习者监控技术。接下来,我们将回顾这一领域的标准化工作;最后,我们将重点关注xAPI以及与LIME模型的潜在交互,下面也将对此进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Current Student-Monitoring Techniques used in eLearning-Focused recommender Systems and Learning analytics. The Experience API & LIME model Case Study
Recommender systems require input information in order to properly operate and deliver content or behaviour suggestions to end users. eLearning scenarios are no exception. Users are current students and recommendations can be built upon paths (both formal and informal), relationships, behaviours, friends, followers, actions, grades, tutor interaction, etc. A recommender system must somehow retrieve, categorize and work with all these details. There are several ways to do so: from raw and inelegant database access to more curated web APIs or even via HTML scrapping. New server-centric user-action logging and monitoring standard technologies have been presented in past years by several groups, organizations and standard bodies. The Experience API (xAPI), detailed in this article, is one of these. In the first part of this paper we analyse current learner-monitoring techniques as an initialization phase for eLearning recommender systems. We next review standardization efforts in this area; finally, we focus on xAPI and the potential interaction with the LIME model, which will be also summarized below.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信