基于流形的监督特征提取与人脸识别

Caikou Chen, Cao Li, Jing-yu Yang
{"title":"基于流形的监督特征提取与人脸识别","authors":"Caikou Chen, Cao Li, Jing-yu Yang","doi":"10.1109/CCPR.2008.16","DOIUrl":null,"url":null,"abstract":"Unsupervised discriminant projection (UDP) has a good effect on face recognition problem, but it has not made full use of the training samples' class information that is useful for classification. Linear discrimination analysis (LDA) is a classical face recognition method. It is effective for classification, but it can not discover the samples' nonlinear structure. This paper develops a manifold-based supervised feature extraction method, which combines the manifold learning method UDP and the class-label information. It seeks to find a projection that maximizes the nonlocal scatter, while minimizes the local scatter and the within-class scatter. This method not only finds the intrinsic low-dimensional nonlinear representation of original high-dimensional data, but also is effective for classification. The experimental results on Yale face image database show that the proposed method outperforms the current UDP and LDA.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold-Based Supervised Feature Extraction and Face Recognition\",\"authors\":\"Caikou Chen, Cao Li, Jing-yu Yang\",\"doi\":\"10.1109/CCPR.2008.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised discriminant projection (UDP) has a good effect on face recognition problem, but it has not made full use of the training samples' class information that is useful for classification. Linear discrimination analysis (LDA) is a classical face recognition method. It is effective for classification, but it can not discover the samples' nonlinear structure. This paper develops a manifold-based supervised feature extraction method, which combines the manifold learning method UDP and the class-label information. It seeks to find a projection that maximizes the nonlocal scatter, while minimizes the local scatter and the within-class scatter. This method not only finds the intrinsic low-dimensional nonlinear representation of original high-dimensional data, but also is effective for classification. The experimental results on Yale face image database show that the proposed method outperforms the current UDP and LDA.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无监督判别投影(UDP)在人脸识别问题上有很好的效果,但它没有充分利用训练样本的分类信息。线性判别分析(LDA)是一种经典的人脸识别方法。它对分类是有效的,但不能发现样本的非线性结构。本文将流形学习方法UDP与类标签信息相结合,提出了一种基于流形的监督特征提取方法。它寻求找到一个最大化非局部分散,同时最小化局部分散和类内分散的投影。该方法不仅找到了原始高维数据固有的低维非线性表示,而且对分类也很有效。在耶鲁人脸图像数据库上的实验结果表明,该方法优于当前的UDP和LDA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold-Based Supervised Feature Extraction and Face Recognition
Unsupervised discriminant projection (UDP) has a good effect on face recognition problem, but it has not made full use of the training samples' class information that is useful for classification. Linear discrimination analysis (LDA) is a classical face recognition method. It is effective for classification, but it can not discover the samples' nonlinear structure. This paper develops a manifold-based supervised feature extraction method, which combines the manifold learning method UDP and the class-label information. It seeks to find a projection that maximizes the nonlocal scatter, while minimizes the local scatter and the within-class scatter. This method not only finds the intrinsic low-dimensional nonlinear representation of original high-dimensional data, but also is effective for classification. The experimental results on Yale face image database show that the proposed method outperforms the current UDP and LDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信