平均情况算法的最坏情况运行时间

L. Antunes, L. Fortnow
{"title":"平均情况算法的最坏情况运行时间","authors":"L. Antunes, L. Fortnow","doi":"10.1109/CCC.2009.12","DOIUrl":null,"url":null,"abstract":"Under a standard hardness assumption we exactly characterize the worst-case running time of languages that are in average polynomial-time over all polynomial-time samplable distributions. More precisely we show that if exponential time is not infinitely often in subexponential space, then the following are equivalent for any algorithm $A$: \\begin{itemize} \\item For all $\\p$-samplable distributions $\\mu$, $A$ runs in time polynomial on $\\mu$-average. \\item For all polynomial $p$, the running time for A is bounded by $2^{O(K^p(x)-K(x)+\\log(|x|))}$ for \\emph{all} inputs $x$. \\end{itemize} where $K(x)$ is the Kolmogorov complexity (size of smallest program generating $x$) and $K^p(x)$ is the size of the smallest program generating $x$ within time $p(|x|)$. To prove this result we show that, under the hardness assumption, the polynomial-time Kolmogorov distribution, $m^p(x)=2^{-K^p(x)}$, is universal among the P-samplable distributions.","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Worst-Case Running Times for Average-Case Algorithms\",\"authors\":\"L. Antunes, L. Fortnow\",\"doi\":\"10.1109/CCC.2009.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under a standard hardness assumption we exactly characterize the worst-case running time of languages that are in average polynomial-time over all polynomial-time samplable distributions. More precisely we show that if exponential time is not infinitely often in subexponential space, then the following are equivalent for any algorithm $A$: \\\\begin{itemize} \\\\item For all $\\\\p$-samplable distributions $\\\\mu$, $A$ runs in time polynomial on $\\\\mu$-average. \\\\item For all polynomial $p$, the running time for A is bounded by $2^{O(K^p(x)-K(x)+\\\\log(|x|))}$ for \\\\emph{all} inputs $x$. \\\\end{itemize} where $K(x)$ is the Kolmogorov complexity (size of smallest program generating $x$) and $K^p(x)$ is the size of the smallest program generating $x$ within time $p(|x|)$. To prove this result we show that, under the hardness assumption, the polynomial-time Kolmogorov distribution, $m^p(x)=2^{-K^p(x)}$, is universal among the P-samplable distributions.\",\"PeriodicalId\":158572,\"journal\":{\"name\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2009.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在标准硬度假设下,我们准确地描述了在所有多项式时间可抽样分布中平均多项式时间的语言的最坏情况运行时间。更准确地说,我们证明了如果指数时间在次指数空间中不是无限的,那么以下是对任何算法$A$的等价: \begin{itemize} \item 对于所有$\p$ -可抽样分布$\mu$, $A$在$\mu$ -平均值上以时间多项式运行。 \item 对于所有多项式$p$,对于\emph{所有}输入$x$, A的运行时间以$2^{O(K^p(x)-K(x)+\log(|x|))}$为界。 \end{itemize} 其中$K(x)$是Kolmogorov复杂度(生成$x$的最小程序的大小),$K^p(x)$是在$p(|x|)$时间内生成$x$的最小程序的大小。为了证明这一结果,我们证明了在硬度假设下,多项式时间Kolmogorov分布$m^p(x)=2^{-K^p(x)}$在p -可抽样分布中是普遍的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Worst-Case Running Times for Average-Case Algorithms
Under a standard hardness assumption we exactly characterize the worst-case running time of languages that are in average polynomial-time over all polynomial-time samplable distributions. More precisely we show that if exponential time is not infinitely often in subexponential space, then the following are equivalent for any algorithm $A$: \begin{itemize} \item For all $\p$-samplable distributions $\mu$, $A$ runs in time polynomial on $\mu$-average. \item For all polynomial $p$, the running time for A is bounded by $2^{O(K^p(x)-K(x)+\log(|x|))}$ for \emph{all} inputs $x$. \end{itemize} where $K(x)$ is the Kolmogorov complexity (size of smallest program generating $x$) and $K^p(x)$ is the size of the smallest program generating $x$ within time $p(|x|)$. To prove this result we show that, under the hardness assumption, the polynomial-time Kolmogorov distribution, $m^p(x)=2^{-K^p(x)}$, is universal among the P-samplable distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信