基于EM的一般线性状态空间系统估计

Tong Zhang
{"title":"基于EM的一般线性状态空间系统估计","authors":"Tong Zhang","doi":"10.1109/CCDC.2018.8407657","DOIUrl":null,"url":null,"abstract":"EM-KF algorithm is very widely used, such as blind source separation and so on. However, due to the lack of research on the more general state space model with input data, it is difficult to apply to the real industrial system. In this paper, the EM-KF algorithm is successfully improved for the more general state space model. A simulation example is given to demonstrate the effectiveness of the algorithm.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EM based estimation for general linear state space systems\",\"authors\":\"Tong Zhang\",\"doi\":\"10.1109/CCDC.2018.8407657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EM-KF algorithm is very widely used, such as blind source separation and so on. However, due to the lack of research on the more general state space model with input data, it is difficult to apply to the real industrial system. In this paper, the EM-KF algorithm is successfully improved for the more general state space model. A simulation example is given to demonstrate the effectiveness of the algorithm.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

EM-KF算法应用非常广泛,如盲源分离等。然而,由于缺乏对具有输入数据的更通用的状态空间模型的研究,难以应用于实际工业系统。本文成功地改进了EM-KF算法,使其适用于更一般的状态空间模型。仿真算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EM based estimation for general linear state space systems
EM-KF algorithm is very widely used, such as blind source separation and so on. However, due to the lack of research on the more general state space model with input data, it is difficult to apply to the real industrial system. In this paper, the EM-KF algorithm is successfully improved for the more general state space model. A simulation example is given to demonstrate the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信