正交多项式稳定化

A. E. Choque-Rivero, Omar Fabián González Hernández
{"title":"正交多项式稳定化","authors":"A. E. Choque-Rivero, Omar Fabián González Hernández","doi":"10.1109/ROPEC.2017.8261612","DOIUrl":null,"url":null,"abstract":"Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stabilization via orthogonal polynomials\",\"authors\":\"A. E. Choque-Rivero, Omar Fabián González Hernández\",\"doi\":\"10.1109/ROPEC.2017.8261612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.\",\"PeriodicalId\":260469,\"journal\":{\"name\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2017.8261612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设n为布鲁诺夫斯基系统的维数。对于n = 2m(分别为n = 2m + 1),我们证明了[0,∞)上每一个在(0,∞)上至少有n/2个增加点,(分别为(n + 1)/2个增加点的正分布,在[0,∞)上产生一个位置控制,该位置控制稳定了维数1≤k≤n的Brunovsky系统族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization via orthogonal polynomials
Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信