A. E. Choque-Rivero, Omar Fabián González Hernández
{"title":"正交多项式稳定化","authors":"A. E. Choque-Rivero, Omar Fabián González Hernández","doi":"10.1109/ROPEC.2017.8261612","DOIUrl":null,"url":null,"abstract":"Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stabilization via orthogonal polynomials\",\"authors\":\"A. E. Choque-Rivero, Omar Fabián González Hernández\",\"doi\":\"10.1109/ROPEC.2017.8261612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.\",\"PeriodicalId\":260469,\"journal\":{\"name\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2017.8261612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let n be the dimension of the Brunovsky system. For n = 2m (respectively n = 2m + 1), we prove that every positive distribution on [0, ∞) that has at least n/2 points of increase on (0, ∞), (respectively (n + 1)/2 points of increase on [0, ∞) generates a positional control that stabilizes a family of Brunovsky systems of dimensions 1 ≤ k ≤ n.