{"title":"半透明光网络中的子网划分与分段恢复","authors":"Ezhan Karasan, M. Arisoylu","doi":"10.1117/12.533305","DOIUrl":null,"url":null,"abstract":"We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We formulate the problem of designing restorable subnetworks in translucent networks as an Integer Linear Programming (ILP) problem, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations and it is 2-connected. A greedy heuristic algorithm for the same problem is also proposed for planar network topologies. We propose section restoration for translucent networks where failed connections are rerouted inside the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that section restoration generates fiber costs which are close to those with the path restoration technique for the mesh topologies used in this study. It is also shown that the number of transponders with the translucent optical network is substantially reduced compared to opaque networks.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subnetwork partitioning and section restoration in translucent optical networks\",\"authors\":\"Ezhan Karasan, M. Arisoylu\",\"doi\":\"10.1117/12.533305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We formulate the problem of designing restorable subnetworks in translucent networks as an Integer Linear Programming (ILP) problem, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations and it is 2-connected. A greedy heuristic algorithm for the same problem is also proposed for planar network topologies. We propose section restoration for translucent networks where failed connections are rerouted inside the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that section restoration generates fiber costs which are close to those with the path restoration technique for the mesh topologies used in this study. It is also shown that the number of transponders with the translucent optical network is substantially reduced compared to opaque networks.\",\"PeriodicalId\":187370,\"journal\":{\"name\":\"OptiComm: Optical Networking and Communications Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OptiComm: Optical Networking and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.533305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subnetwork partitioning and section restoration in translucent optical networks
We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We formulate the problem of designing restorable subnetworks in translucent networks as an Integer Linear Programming (ILP) problem, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations and it is 2-connected. A greedy heuristic algorithm for the same problem is also proposed for planar network topologies. We propose section restoration for translucent networks where failed connections are rerouted inside the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that section restoration generates fiber costs which are close to those with the path restoration technique for the mesh topologies used in this study. It is also shown that the number of transponders with the translucent optical network is substantially reduced compared to opaque networks.