在未知室内环境中使用交通标志的非机器人移动机器人导航

C. Purcaru, R. Precup, D. Iercan, L. Fedorovici, B. Dohangie, Florin Dragan
{"title":"在未知室内环境中使用交通标志的非机器人移动机器人导航","authors":"C. Purcaru, R. Precup, D. Iercan, L. Fedorovici, B. Dohangie, Florin Dragan","doi":"10.1109/SACI.2013.6608982","DOIUrl":null,"url":null,"abstract":"This paper proposes a navigation algorithm that allows mobile robots that participate in different missions to move in unknown environment. The algorithm uses data from the sonar or from the infrared sensors mounted on the robots and data from the video camera with which the robots are equipped. Using the video camera the robots will be able to detect and classify different traffic signs that can help the robots to arrive the target points safely and in a short time. The algorithm includes a convolutional neural network with six layers to classify the traffic signs. Several simulations were run on the nRobotic platform developed at the “Politehnica” University of Timisoara, Romania, to validate the new algorithm. The simulation scenarios illustrate attractive mechatronics applications concerning the behaviors of robots in unknown environments in the presence of multiple traffic signs.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nrobotic mobile robot navigation using traffic signs in unknown indoor environments\",\"authors\":\"C. Purcaru, R. Precup, D. Iercan, L. Fedorovici, B. Dohangie, Florin Dragan\",\"doi\":\"10.1109/SACI.2013.6608982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a navigation algorithm that allows mobile robots that participate in different missions to move in unknown environment. The algorithm uses data from the sonar or from the infrared sensors mounted on the robots and data from the video camera with which the robots are equipped. Using the video camera the robots will be able to detect and classify different traffic signs that can help the robots to arrive the target points safely and in a short time. The algorithm includes a convolutional neural network with six layers to classify the traffic signs. Several simulations were run on the nRobotic platform developed at the “Politehnica” University of Timisoara, Romania, to validate the new algorithm. The simulation scenarios illustrate attractive mechatronics applications concerning the behaviors of robots in unknown environments in the presence of multiple traffic signs.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种允许参与不同任务的移动机器人在未知环境中移动的导航算法。该算法使用安装在机器人上的声纳或红外传感器的数据,以及机器人配备的摄像机的数据。使用摄像机,机器人将能够检测和分类不同的交通标志,这可以帮助机器人在短时间内安全到达目标点。该算法采用六层卷积神经网络对交通标志进行分类。在罗马尼亚蒂米什瓦拉“波利特尼察”大学开发的nRobotic平台上进行了几次模拟,以验证新算法。仿真场景展示了具有吸引力的机电一体化应用,涉及机器人在未知环境中存在多个交通标志的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nrobotic mobile robot navigation using traffic signs in unknown indoor environments
This paper proposes a navigation algorithm that allows mobile robots that participate in different missions to move in unknown environment. The algorithm uses data from the sonar or from the infrared sensors mounted on the robots and data from the video camera with which the robots are equipped. Using the video camera the robots will be able to detect and classify different traffic signs that can help the robots to arrive the target points safely and in a short time. The algorithm includes a convolutional neural network with six layers to classify the traffic signs. Several simulations were run on the nRobotic platform developed at the “Politehnica” University of Timisoara, Romania, to validate the new algorithm. The simulation scenarios illustrate attractive mechatronics applications concerning the behaviors of robots in unknown environments in the presence of multiple traffic signs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信