瓷砖矩阵分解的性能调优

Tomohiro Suzuki
{"title":"瓷砖矩阵分解的性能调优","authors":"Tomohiro Suzuki","doi":"10.1109/MCSoC.2019.00011","DOIUrl":null,"url":null,"abstract":"Task parallel algorithms have attracted attention as algorithms for highly parallel architectures in recent years. The aim of such algorithms is to keep all computing resources running without stalling by executing a large number of fine-grained tasks asynchronously while observing data dependencies. The tile algorithm of matrix decomposition of dense matrices is implemented using a task parallel programming model following such an approach. In this article, we will consider how to select tile size, which is an important performance parameter.","PeriodicalId":104240,"journal":{"name":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Tuning of Tile Matrix Decomposition\",\"authors\":\"Tomohiro Suzuki\",\"doi\":\"10.1109/MCSoC.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task parallel algorithms have attracted attention as algorithms for highly parallel architectures in recent years. The aim of such algorithms is to keep all computing resources running without stalling by executing a large number of fine-grained tasks asynchronously while observing data dependencies. The tile algorithm of matrix decomposition of dense matrices is implemented using a task parallel programming model following such an approach. In this article, we will consider how to select tile size, which is an important performance parameter.\",\"PeriodicalId\":104240,\"journal\":{\"name\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任务并行算法作为一种高度并行的算法,近年来受到了广泛的关注。这种算法的目的是通过在观察数据依赖关系的同时异步执行大量细粒度任务来保持所有计算资源的运行,而不会出现停顿。在此基础上,利用任务并行规划模型实现了密集矩阵的矩阵分解算法。在本文中,我们将考虑如何选择瓷砖大小,这是一个重要的性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Tuning of Tile Matrix Decomposition
Task parallel algorithms have attracted attention as algorithms for highly parallel architectures in recent years. The aim of such algorithms is to keep all computing resources running without stalling by executing a large number of fine-grained tasks asynchronously while observing data dependencies. The tile algorithm of matrix decomposition of dense matrices is implemented using a task parallel programming model following such an approach. In this article, we will consider how to select tile size, which is an important performance parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信