一种新的图挖掘算法

B. Chandra, Shalini Bhaskar
{"title":"一种新的图挖掘算法","authors":"B. Chandra, Shalini Bhaskar","doi":"10.1109/IJCNN.2011.6033330","DOIUrl":null,"url":null,"abstract":"Mining frequent substructures has gained importance in the recent past. Number of algorithms has been presented for mining undirected graphs. Focus of this paper is on mining frequent substructures in directed labeled graphs since it has variety of applications in the area of biology, web mining etc. A novel approach of using equivalence class principle has been proposed for reducing the size of the graph database to be processed for finding frequent substructures. For generating candidate substructures a combination of L-R join operation, serial and mixed extensions have been carried out. This avoids missing of any candidate substructures and at the same time candidate substructures that have high probability of becoming frequent are generated.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new algorithm for graph mining\",\"authors\":\"B. Chandra, Shalini Bhaskar\",\"doi\":\"10.1109/IJCNN.2011.6033330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining frequent substructures has gained importance in the recent past. Number of algorithms has been presented for mining undirected graphs. Focus of this paper is on mining frequent substructures in directed labeled graphs since it has variety of applications in the area of biology, web mining etc. A novel approach of using equivalence class principle has been proposed for reducing the size of the graph database to be processed for finding frequent substructures. For generating candidate substructures a combination of L-R join operation, serial and mixed extensions have been carried out. This avoids missing of any candidate substructures and at the same time candidate substructures that have high probability of becoming frequent are generated.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采矿频繁的子结构在最近变得越来越重要。对于无向图的挖掘,已经提出了许多算法。由于有向标记图在生物学、网络挖掘等领域有着广泛的应用,因此本文的重点是对有向标记图中频繁子结构的挖掘。提出了一种利用等价类原理来减小图数据库查找频繁子结构的处理规模的新方法。为了生成候选子结构,采用了L-R连接操作、串联扩展和混合扩展相结合的方法。这避免了任何候选子结构的缺失,同时生成了高概率变得频繁的候选子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new algorithm for graph mining
Mining frequent substructures has gained importance in the recent past. Number of algorithms has been presented for mining undirected graphs. Focus of this paper is on mining frequent substructures in directed labeled graphs since it has variety of applications in the area of biology, web mining etc. A novel approach of using equivalence class principle has been proposed for reducing the size of the graph database to be processed for finding frequent substructures. For generating candidate substructures a combination of L-R join operation, serial and mixed extensions have been carried out. This avoids missing of any candidate substructures and at the same time candidate substructures that have high probability of becoming frequent are generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信