基于轮式机器人前后距离信息的粗糙地形表面强度频域分析

Jayoung Kim, Jihong Lee
{"title":"基于轮式机器人前后距离信息的粗糙地形表面强度频域分析","authors":"Jayoung Kim, Jihong Lee","doi":"10.1109/ELINFOCOM.2014.6914395","DOIUrl":null,"url":null,"abstract":"This paper explores a possibility of identifying material types using fore-aft distance information of an ultrasonic sensor which is changed depending on surface strength. Fore-aft distance data are transformed into frequency domain using FFT and frequency data are analyzed for extracting features of a material type. Sensor data are acquired by a testbed for analysis of a wheel-terrain interaction on four types of a surface; asphalt, sand, gravel and grass.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of surface strength in frequency domain using fore-aft distance information of wheeled robots on rough terrain\",\"authors\":\"Jayoung Kim, Jihong Lee\",\"doi\":\"10.1109/ELINFOCOM.2014.6914395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a possibility of identifying material types using fore-aft distance information of an ultrasonic sensor which is changed depending on surface strength. Fore-aft distance data are transformed into frequency domain using FFT and frequency data are analyzed for extracting features of a material type. Sensor data are acquired by a testbed for analysis of a wheel-terrain interaction on four types of a surface; asphalt, sand, gravel and grass.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了利用超声传感器的前后距离信息识别材料类型的可能性,该信息随表面强度的变化而变化。利用FFT将前后距离数据转换到频域,并对频域数据进行分析,提取材料类型的特征。传感器数据由一个试验台获取,用于分析四种类型表面上的车轮-地形相互作用;沥青,沙子,砾石和草。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of surface strength in frequency domain using fore-aft distance information of wheeled robots on rough terrain
This paper explores a possibility of identifying material types using fore-aft distance information of an ultrasonic sensor which is changed depending on surface strength. Fore-aft distance data are transformed into frequency domain using FFT and frequency data are analyzed for extracting features of a material type. Sensor data are acquired by a testbed for analysis of a wheel-terrain interaction on four types of a surface; asphalt, sand, gravel and grass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信