量子信息理论的编码定理

H. Yuen
{"title":"量子信息理论的编码定理","authors":"H. Yuen","doi":"10.1109/ISIT.1998.708670","DOIUrl":null,"url":null,"abstract":"Summary form only given. Shannon's original proof of the channel coding theorem via typical input/output sequences is presented in a sphere-packing form to determine the minimum quantum source coding rate. Let S(/spl rho/)/spl equiv/-tr/spl rho/log/spl rho/ be the Von Neumann entropy of a density operator p on a finite-dimensional space H, i/spl rarr//spl rho//sub i/ the state modulation map on an alphabet I, /spl rho/~/spl equiv//spl Sigma//sub i/p/sub i//spl rho//sub i/ the average state with respect to a prior distribution p/sub i/ on I, and S~(/spl rho//sub i/)/spl equiv//spl Sigma//sub i/p/sub i/S(/spl rho//sub i/). The minimum quantum state dimension per symbol needed to represent {/spl rho//sub i/} under {p/sub i/} with arbitrarily small error is shown to be S(/spl rho/~)-S~(/spl rho//sub i/) for a whole class of error measures. This generalizes to arbitrary mixed states the pure state result. Further generalizations of this result to arbitrary alphabet I, infinite dimensional H, as well as rate-distortion coding are presented. Channel coding for restoring quantum states is discussed with the conclusion that for typical noisy channels nonzero channel capacity cannot be obtained. Relations of these results, in particular the quantity S(/spl rho/~)-S~(/spl rho//sub i/), to classical (nonquantum) information transfer are elaborated.","PeriodicalId":133728,"journal":{"name":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","volume":"3 37","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Coding theorems of quantum information theory\",\"authors\":\"H. Yuen\",\"doi\":\"10.1109/ISIT.1998.708670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Shannon's original proof of the channel coding theorem via typical input/output sequences is presented in a sphere-packing form to determine the minimum quantum source coding rate. Let S(/spl rho/)/spl equiv/-tr/spl rho/log/spl rho/ be the Von Neumann entropy of a density operator p on a finite-dimensional space H, i/spl rarr//spl rho//sub i/ the state modulation map on an alphabet I, /spl rho/~/spl equiv//spl Sigma//sub i/p/sub i//spl rho//sub i/ the average state with respect to a prior distribution p/sub i/ on I, and S~(/spl rho//sub i/)/spl equiv//spl Sigma//sub i/p/sub i/S(/spl rho//sub i/). The minimum quantum state dimension per symbol needed to represent {/spl rho//sub i/} under {p/sub i/} with arbitrarily small error is shown to be S(/spl rho/~)-S~(/spl rho//sub i/) for a whole class of error measures. This generalizes to arbitrary mixed states the pure state result. Further generalizations of this result to arbitrary alphabet I, infinite dimensional H, as well as rate-distortion coding are presented. Channel coding for restoring quantum states is discussed with the conclusion that for typical noisy channels nonzero channel capacity cannot be obtained. Relations of these results, in particular the quantity S(/spl rho/~)-S~(/spl rho//sub i/), to classical (nonquantum) information transfer are elaborated.\",\"PeriodicalId\":133728,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"volume\":\"3 37\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1998.708670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1998.708670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

只提供摘要形式。Shannon通过典型的输入/输出序列对信道编码定理进行了原始证明,并以球填充的形式给出了最小量子源编码速率。设S(/spl rho/)/spl equiv/-tr/spl rho/log/spl rho/是有限维空间H上密度算子p的冯诺依曼熵,i/spl rrr //spl rho//下标i//spl Sigma//下标i/p/下标i//spl rho//下标i//先验分布p/下标i//spl rho//下标i/S ~(/spl rho//下标i/)/spl equiv//spl Sigma//下标i/p/下标i/S(/spl rho//下标i/)。在{p/sub i/}下任意小误差下表示{/spl rho//sub i/}所需的每个符号的最小量子态维为S(/spl rho/~)-S~(/spl rho//sub i/)。这将纯态结果推广到任意混合状态。将这一结果进一步推广到任意字母I、无限维H以及率失真编码。讨论了用于恢复量子态的信道编码,得出对于典型的噪声信道不能获得非零信道容量的结论。详细阐述了这些结果,特别是S(/spl rho/~)-S~(/spl rho//sub i/)与经典(非量子)信息传递的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding theorems of quantum information theory
Summary form only given. Shannon's original proof of the channel coding theorem via typical input/output sequences is presented in a sphere-packing form to determine the minimum quantum source coding rate. Let S(/spl rho/)/spl equiv/-tr/spl rho/log/spl rho/ be the Von Neumann entropy of a density operator p on a finite-dimensional space H, i/spl rarr//spl rho//sub i/ the state modulation map on an alphabet I, /spl rho/~/spl equiv//spl Sigma//sub i/p/sub i//spl rho//sub i/ the average state with respect to a prior distribution p/sub i/ on I, and S~(/spl rho//sub i/)/spl equiv//spl Sigma//sub i/p/sub i/S(/spl rho//sub i/). The minimum quantum state dimension per symbol needed to represent {/spl rho//sub i/} under {p/sub i/} with arbitrarily small error is shown to be S(/spl rho/~)-S~(/spl rho//sub i/) for a whole class of error measures. This generalizes to arbitrary mixed states the pure state result. Further generalizations of this result to arbitrary alphabet I, infinite dimensional H, as well as rate-distortion coding are presented. Channel coding for restoring quantum states is discussed with the conclusion that for typical noisy channels nonzero channel capacity cannot be obtained. Relations of these results, in particular the quantity S(/spl rho/~)-S~(/spl rho//sub i/), to classical (nonquantum) information transfer are elaborated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信