时滞微分系统的渐近稳定性结果

D. Igobi, M. Egwurube, M. R. Odekunle
{"title":"时滞微分系统的渐近稳定性结果","authors":"D. Igobi, M. Egwurube, M. R. Odekunle","doi":"10.4314/GJMAS.V8I1.50811","DOIUrl":null,"url":null,"abstract":"The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability results for retarded differential systems\",\"authors\":\"D. Igobi, M. Egwurube, M. R. Odekunle\",\"doi\":\"10.4314/GJMAS.V8I1.50811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.\",\"PeriodicalId\":126381,\"journal\":{\"name\":\"Global Journal of Mathematical Sciences\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/GJMAS.V8I1.50811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V8I1.50811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时滞微分系统的多项式方程的超越性使得其解难以明确表达。这在系统解的渐近稳定性分析中造成了挫折。已经使用了各种可接受的数学技术来解决这个问题。本文利用积分微分方程和给定矩阵的正对称性质,构造了一个李雅普诺夫泛函。探讨了对称矩阵的凸集段的引入,建立了公式化泛函一阶导数的有界性。利用积分-微分方程计算系统达到稳定的最大时滞区间。对数值问题的应用验证了试验的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic stability results for retarded differential systems
The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信