{"title":"时滞微分系统的渐近稳定性结果","authors":"D. Igobi, M. Egwurube, M. R. Odekunle","doi":"10.4314/GJMAS.V8I1.50811","DOIUrl":null,"url":null,"abstract":"The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability results for retarded differential systems\",\"authors\":\"D. Igobi, M. Egwurube, M. R. Odekunle\",\"doi\":\"10.4314/GJMAS.V8I1.50811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.\",\"PeriodicalId\":126381,\"journal\":{\"name\":\"Global Journal of Mathematical Sciences\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/GJMAS.V8I1.50811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V8I1.50811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic stability results for retarded differential systems
The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper, the integral-differential equation and the positive symmetric properties of given matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability. Its application to numerical problems confirms the suitability of the test.