外代数的Hasse-Schmidt推导和Cayley-Hamilton定理

Letterio Gatto, I. Scherbak
{"title":"外代数的Hasse-Schmidt推导和Cayley-Hamilton定理","authors":"Letterio Gatto, I. Scherbak","doi":"10.1090/CONM/733/14739","DOIUrl":null,"url":null,"abstract":"Using the natural notion of {\\em Hasse--Schmidt derivations on an exterior algebra}, we relate two classical and seemingly unrelated subjects. The first is the celebrated Cayley--Hamilton theorem of linear algebra, \"{\\em each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial}\", and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heinsenberg algebra.","PeriodicalId":432671,"journal":{"name":"Functional Analysis and Geometry","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hasse–Schmidt derivations and Cayley–Hamilton\\n theorem for exterior algebras\",\"authors\":\"Letterio Gatto, I. Scherbak\",\"doi\":\"10.1090/CONM/733/14739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the natural notion of {\\\\em Hasse--Schmidt derivations on an exterior algebra}, we relate two classical and seemingly unrelated subjects. The first is the celebrated Cayley--Hamilton theorem of linear algebra, \\\"{\\\\em each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial}\\\", and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heinsenberg algebra.\",\"PeriodicalId\":432671,\"journal\":{\"name\":\"Functional Analysis and Geometry\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/733/14739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/733/14739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

利用外代数上的哈塞—施密特推导的自然概念,我们把两个经典的、似乎不相关的主题联系起来。第一个是线性代数中著名的Cayley—Hamilton定理,“有限维向量空间的每一个自同态都是其自身特征多项式的根”,第二个是关于(无限维)Heinsenberg代数表示理论中出现的玻色子顶点算子的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras
Using the natural notion of {\em Hasse--Schmidt derivations on an exterior algebra}, we relate two classical and seemingly unrelated subjects. The first is the celebrated Cayley--Hamilton theorem of linear algebra, "{\em each endomorphism of a finite-dimensional vector space is a root of its own characteristic polynomial}", and the second concerns the expression of the bosonic vertex operators occurring in the representation theory of the (infinite-dimensional) Heinsenberg algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信