Ladislav Mošner, Oldrich Plchot, Johan Rohdin, L. Burget, J. Černocký
{"title":"应用感知波束成形的说话人验证","authors":"Ladislav Mošner, Oldrich Plchot, Johan Rohdin, L. Burget, J. Černocký","doi":"10.1109/ASRU46091.2019.9003932","DOIUrl":null,"url":null,"abstract":"Multichannel speech processing applications usually employ beamformers as means of speech enhancement through spatial filtering. Beamformers with learnable parameters require training to minimize a loss function that is not necessarily correlated with the final objective. In this paper, we present a framework employing recent neural network based generalized eigenvalue beamformer and application-specific model that allows for optimization of beamformer w.r.t. target application. In our case, the application is speaker verification which utilizes a speaker embedding (x-vector) extractor that conveniently comes with desired loss. We show that application-specific training of the beamformer brings performance improvements over a system trained in the standard way. We perform our analysis on the recently introduced VOiCES corpus which contains multichannel data and allows us to modify the evaluation trials such that enrollment recordings remain single-channel and test utterances are multichannel.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speaker Verification with Application-Aware Beamforming\",\"authors\":\"Ladislav Mošner, Oldrich Plchot, Johan Rohdin, L. Burget, J. Černocký\",\"doi\":\"10.1109/ASRU46091.2019.9003932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multichannel speech processing applications usually employ beamformers as means of speech enhancement through spatial filtering. Beamformers with learnable parameters require training to minimize a loss function that is not necessarily correlated with the final objective. In this paper, we present a framework employing recent neural network based generalized eigenvalue beamformer and application-specific model that allows for optimization of beamformer w.r.t. target application. In our case, the application is speaker verification which utilizes a speaker embedding (x-vector) extractor that conveniently comes with desired loss. We show that application-specific training of the beamformer brings performance improvements over a system trained in the standard way. We perform our analysis on the recently introduced VOiCES corpus which contains multichannel data and allows us to modify the evaluation trials such that enrollment recordings remain single-channel and test utterances are multichannel.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speaker Verification with Application-Aware Beamforming
Multichannel speech processing applications usually employ beamformers as means of speech enhancement through spatial filtering. Beamformers with learnable parameters require training to minimize a loss function that is not necessarily correlated with the final objective. In this paper, we present a framework employing recent neural network based generalized eigenvalue beamformer and application-specific model that allows for optimization of beamformer w.r.t. target application. In our case, the application is speaker verification which utilizes a speaker embedding (x-vector) extractor that conveniently comes with desired loss. We show that application-specific training of the beamformer brings performance improvements over a system trained in the standard way. We perform our analysis on the recently introduced VOiCES corpus which contains multichannel data and allows us to modify the evaluation trials such that enrollment recordings remain single-channel and test utterances are multichannel.