{"title":"广义交换超立方体的可靠性分析","authors":"Qifan Zhang, Liqiong Xu, Weihua Yang, Shanshan Yin","doi":"10.1142/s0129626420500097","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a non-complete graph, a subset [Formula: see text] is called a [Formula: see text]-component cut of [Formula: see text], if [Formula: see text] is disconnected and has at least [Formula: see text] components. The cardinality of the minimum [Formula: see text]-component cut is the [Formula: see text]-component connectivity of [Formula: see text] and is denoted by [Formula: see text]. The [Formula: see text]-component connectivity is a natural extension of the classical connectivity. As an application, the [Formula: see text]-component connectivity can be used to evaluate the reliability and fault tolerance of an interconnection network structure based on a graph model. In a previous work, E. Cheng et al. obtained the [Formula: see text]-component connectivity of the generalized exchanged hypercube [Formula: see text] for [Formula: see text] and [Formula: see text]. In this paper, we continue the work and determine that [Formula: see text] for [Formula: see text]. Moreover, we show that every optimal [Formula: see text]-component cut of [Formula: see text] is trivial for [Formula: see text] and [Formula: see text].","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Analysis of the Generalized Exchanged Hypercube\",\"authors\":\"Qifan Zhang, Liqiong Xu, Weihua Yang, Shanshan Yin\",\"doi\":\"10.1142/s0129626420500097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a non-complete graph, a subset [Formula: see text] is called a [Formula: see text]-component cut of [Formula: see text], if [Formula: see text] is disconnected and has at least [Formula: see text] components. The cardinality of the minimum [Formula: see text]-component cut is the [Formula: see text]-component connectivity of [Formula: see text] and is denoted by [Formula: see text]. The [Formula: see text]-component connectivity is a natural extension of the classical connectivity. As an application, the [Formula: see text]-component connectivity can be used to evaluate the reliability and fault tolerance of an interconnection network structure based on a graph model. In a previous work, E. Cheng et al. obtained the [Formula: see text]-component connectivity of the generalized exchanged hypercube [Formula: see text] for [Formula: see text] and [Formula: see text]. In this paper, we continue the work and determine that [Formula: see text] for [Formula: see text]. Moreover, we show that every optimal [Formula: see text]-component cut of [Formula: see text] is trivial for [Formula: see text] and [Formula: see text].\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626420500097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626420500097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设[Formula: see text]是一个非完全图,如果[Formula: see text]是不相连的,并且至少有[Formula: see text]个组件,则[Formula: see text]的子集[Formula: see text]被称为[Formula: see text]的[Formula: see text]组件切割。最小[公式:见文]-分量分割的基数是[公式:见文]的[公式:见文]-分量连通性,用[公式:见文]表示。组件连通性是经典连通性的自然延伸。作为一种应用,[公式:见文]-组件连通性可用于基于图模型的互连网络结构的可靠性和容错性评估。E. Cheng等人在之前的工作中得到了[公式:见文]和[公式:见文]的广义交换超立方体[公式:见文]的分量连通性[公式:见文]。在本文中,我们继续工作,并确定[公式:见文]为[公式:见文]。此外,我们还证明,对于[公式:见文本]和[公式:见文本]而言,[公式:见文本]的每个最优[公式:见文本]-组件切割都是微不足道的。
Reliability Analysis of the Generalized Exchanged Hypercube
Let [Formula: see text] be a non-complete graph, a subset [Formula: see text] is called a [Formula: see text]-component cut of [Formula: see text], if [Formula: see text] is disconnected and has at least [Formula: see text] components. The cardinality of the minimum [Formula: see text]-component cut is the [Formula: see text]-component connectivity of [Formula: see text] and is denoted by [Formula: see text]. The [Formula: see text]-component connectivity is a natural extension of the classical connectivity. As an application, the [Formula: see text]-component connectivity can be used to evaluate the reliability and fault tolerance of an interconnection network structure based on a graph model. In a previous work, E. Cheng et al. obtained the [Formula: see text]-component connectivity of the generalized exchanged hypercube [Formula: see text] for [Formula: see text] and [Formula: see text]. In this paper, we continue the work and determine that [Formula: see text] for [Formula: see text]. Moreover, we show that every optimal [Formula: see text]-component cut of [Formula: see text] is trivial for [Formula: see text] and [Formula: see text].