Ling Qiu, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh
{"title":"超导量子比特变分量子因子的弹性分析与改进","authors":"Ling Qiu, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh","doi":"10.1145/3370748.3406586","DOIUrl":null,"url":null,"abstract":"Variational algorithm using Quantum Approximate Optimization Algorithm (QAOA) can solve the prime factorization problem in near-term noisy quantum computers. Conventional Variational Quantum Factoring (VQF) requires a large number of 2-qubit gates (especially for factoring a large number) resulting in deep circuits. The output quality of the deep quantum circuit is degraded due to errors limiting the computational power of quantum computing. In this paper, we explore various transformations to optimize the QAOA circuit for integer factorization. We propose two criteria to select the optimal quantum circuit that can improve the noise resiliency of VQF.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Resiliency analysis and improvement of variational quantum factoring in superconducting qubit\",\"authors\":\"Ling Qiu, M. Alam, Abdullah Ash-Saki, Swaroop Ghosh\",\"doi\":\"10.1145/3370748.3406586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational algorithm using Quantum Approximate Optimization Algorithm (QAOA) can solve the prime factorization problem in near-term noisy quantum computers. Conventional Variational Quantum Factoring (VQF) requires a large number of 2-qubit gates (especially for factoring a large number) resulting in deep circuits. The output quality of the deep quantum circuit is degraded due to errors limiting the computational power of quantum computing. In this paper, we explore various transformations to optimize the QAOA circuit for integer factorization. We propose two criteria to select the optimal quantum circuit that can improve the noise resiliency of VQF.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resiliency analysis and improvement of variational quantum factoring in superconducting qubit
Variational algorithm using Quantum Approximate Optimization Algorithm (QAOA) can solve the prime factorization problem in near-term noisy quantum computers. Conventional Variational Quantum Factoring (VQF) requires a large number of 2-qubit gates (especially for factoring a large number) resulting in deep circuits. The output quality of the deep quantum circuit is degraded due to errors limiting the computational power of quantum computing. In this paper, we explore various transformations to optimize the QAOA circuit for integer factorization. We propose two criteria to select the optimal quantum circuit that can improve the noise resiliency of VQF.