用于工厂自动化的低质量字符串识别

K. Sawa, S. Tsuruoka, T. Wakabayashi, F. Kimura, Y. Miyake
{"title":"用于工厂自动化的低质量字符串识别","authors":"K. Sawa, S. Tsuruoka, T. Wakabayashi, F. Kimura, Y. Miyake","doi":"10.1109/ICDAR.1997.620543","DOIUrl":null,"url":null,"abstract":"Describes a method for dot-printed character string recognition on a piece of steel for factory automation. Our scanned string consists of alphanumerics and the '-' character, and the number of characters is variable from 6 to 12 characters. We propose a new recognition procedure for low-quality strings. The procedure includes image emphasis with a Gaussian Laplacian filter, the extraction of the string subimage, segmentation-recognition with dynamic programming, and fine character recognition. We evaluated its accuracy on a UNIX workstation for 1036 images (8806 characters) scanned by a monochrome video camera in the actual production line at a steel-producing factory, and the average recognition rates were 99.2% for the character recognition and 91.6% for the string recognition.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low quality string recognition for factory automation\",\"authors\":\"K. Sawa, S. Tsuruoka, T. Wakabayashi, F. Kimura, Y. Miyake\",\"doi\":\"10.1109/ICDAR.1997.620543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a method for dot-printed character string recognition on a piece of steel for factory automation. Our scanned string consists of alphanumerics and the '-' character, and the number of characters is variable from 6 to 12 characters. We propose a new recognition procedure for low-quality strings. The procedure includes image emphasis with a Gaussian Laplacian filter, the extraction of the string subimage, segmentation-recognition with dynamic programming, and fine character recognition. We evaluated its accuracy on a UNIX workstation for 1036 images (8806 characters) scanned by a monochrome video camera in the actual production line at a steel-producing factory, and the average recognition rates were 99.2% for the character recognition and 91.6% for the string recognition.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

描述用于工厂自动化的钢材上的点打印字符串识别方法。我们扫描的字符串由字母数字和'-'字符组成,字符数从6到12个字符不等。提出了一种新的低质量字符串识别方法。该程序包括高斯拉普拉斯滤波图像强调、字符串子图像提取、动态规划分割识别和精细字符识别。在UNIX工作站上对某钢厂实际生产线上单色摄像机扫描的1036张图像(8806个字符)进行了准确率评估,字符识别的平均识别率为99.2%,字符串识别的平均识别率为91.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low quality string recognition for factory automation
Describes a method for dot-printed character string recognition on a piece of steel for factory automation. Our scanned string consists of alphanumerics and the '-' character, and the number of characters is variable from 6 to 12 characters. We propose a new recognition procedure for low-quality strings. The procedure includes image emphasis with a Gaussian Laplacian filter, the extraction of the string subimage, segmentation-recognition with dynamic programming, and fine character recognition. We evaluated its accuracy on a UNIX workstation for 1036 images (8806 characters) scanned by a monochrome video camera in the actual production line at a steel-producing factory, and the average recognition rates were 99.2% for the character recognition and 91.6% for the string recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信