在线订单基算法及其对块Wiedemann算法的影响

Pascal Giorgi, R. Lebreton
{"title":"在线订单基算法及其对块Wiedemann算法的影响","authors":"Pascal Giorgi, R. Lebreton","doi":"10.1145/2608628.2608647","DOIUrl":null,"url":null,"abstract":"Order bases are a fundamental tool for linear algebra with polynomial coefficients. In particular, block Wiedemann methods are nowadays able to tackle large sparse matrix problems because they benefit from fast order basis algorithms. However, such fast algorithms suffer from two practical drawbacks: they are not designed for early termination and often require more knowledge on the input than necessary. In this paper, we propose an online algorithm for order basis which allows for both early termination and minimal input requirement while keeping quasi-optimal complexity in the order. Using this algorithm inside block Wiedemann methods leads to an improvement of their practical performance by a constant factor.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Online order basis algorithm and its impact on the block Wiedemann algorithm\",\"authors\":\"Pascal Giorgi, R. Lebreton\",\"doi\":\"10.1145/2608628.2608647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Order bases are a fundamental tool for linear algebra with polynomial coefficients. In particular, block Wiedemann methods are nowadays able to tackle large sparse matrix problems because they benefit from fast order basis algorithms. However, such fast algorithms suffer from two practical drawbacks: they are not designed for early termination and often require more knowledge on the input than necessary. In this paper, we propose an online algorithm for order basis which allows for both early termination and minimal input requirement while keeping quasi-optimal complexity in the order. Using this algorithm inside block Wiedemann methods leads to an improvement of their practical performance by a constant factor.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

序基是多项式系数线性代数的基本工具。特别是,块Wiedemann方法现在能够处理大型稀疏矩阵问题,因为它们受益于快速的顺序基算法。然而,这种快速算法有两个实际的缺点:它们不是为早期终止而设计的,并且通常需要更多的输入知识。在本文中,我们提出了一种在线的排序基算法,该算法允许提前终止和最小的输入需求,同时保持排序的准最优复杂度。在块Wiedemann方法中使用该算法,使其实际性能提高了一个常数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online order basis algorithm and its impact on the block Wiedemann algorithm
Order bases are a fundamental tool for linear algebra with polynomial coefficients. In particular, block Wiedemann methods are nowadays able to tackle large sparse matrix problems because they benefit from fast order basis algorithms. However, such fast algorithms suffer from two practical drawbacks: they are not designed for early termination and often require more knowledge on the input than necessary. In this paper, we propose an online algorithm for order basis which allows for both early termination and minimal input requirement while keeping quasi-optimal complexity in the order. Using this algorithm inside block Wiedemann methods leads to an improvement of their practical performance by a constant factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信