三维人体运动预测的语境和意图:切换任务的实验和用户研究

Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu
{"title":"三维人体运动预测的语境和意图:切换任务的实验和用户研究","authors":"Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu","doi":"10.1109/RO-MAN53752.2022.9900743","DOIUrl":null,"url":null,"abstract":"In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context and Intention for 3D Human Motion Prediction: Experimentation and User study in Handover Tasks\",\"authors\":\"Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu\",\"doi\":\"10.1109/RO-MAN53752.2022.9900743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种新的注意力深度学习模型,该模型使用上下文和人类意图来预测人机切换任务中的3D人体运动。该模型使用了一个多头注意力结构,该结构将人类运动、机器人末端执行器和障碍物位置作为输入。该模型的输出是预测的人体运动和预测的人的意图。我们用这个模型来分析与机器人的交接协作任务,其中机器人能够预测人类未来的运动,并将这些信息用于它的计划。在几个实验中,人类志愿者填写了一份标准的民意调查,对不同的特征进行评分,同时考虑到机器人何时使用预测,何时不使用预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context and Intention for 3D Human Motion Prediction: Experimentation and User study in Handover Tasks
In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信