{"title":"降低尾部风险预测模型中的风险","authors":"A. Clements, C. Drovandi, Dan Li","doi":"10.2139/ssrn.3750440","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that existing quantile regression models used for forecasting Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. A Bayesian quantile regression approach is proposed for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity issues can be dealt with. Furthermore, a new additive-type model is developed for the ES component that is robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the improvements in risk forecasts ensuing from the proposed methods.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing the Risk in Tail Risk Forecasting Models\",\"authors\":\"A. Clements, C. Drovandi, Dan Li\",\"doi\":\"10.2139/ssrn.3750440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates that existing quantile regression models used for forecasting Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. A Bayesian quantile regression approach is proposed for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity issues can be dealt with. Furthermore, a new additive-type model is developed for the ES component that is robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the improvements in risk forecasts ensuing from the proposed methods.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3750440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3750440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper demonstrates that existing quantile regression models used for forecasting Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. A Bayesian quantile regression approach is proposed for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity issues can be dealt with. Furthermore, a new additive-type model is developed for the ES component that is robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the improvements in risk forecasts ensuing from the proposed methods.