基于肌电信号的足球训练疲劳与异常状态检测

Chunhai Cui, Enqian Xin, Meili Qu, Shuai Jiang
{"title":"基于肌电信号的足球训练疲劳与异常状态检测","authors":"Chunhai Cui, Enqian Xin, Meili Qu, Shuai Jiang","doi":"10.4018/IJDST.2021040102","DOIUrl":null,"url":null,"abstract":"This paper proposes to monitor and recognize the fatigue state during football training by analyzing the surface electromyography (EMG) signals. The surface electromyography (EMG) signal is closely connected with the state during sports and training. First, power frequency interference, motion artifacts, and baseline drift in the surface electromyography (EMG) signal are removed; second, the authors extract 6 features: rectified average value (ARV), integrated electromyography myoelectric value (IEMG), root mean square of electromyography value (RMS), median frequency (MF), average power frequency (MPF), and electromyography power (TP) to represent the surface electromyography (EMG) signal; lastly, the extracted features are input into a one-class support vector machine to determine whether the player has been fatigued and are input into a weighted support vector machine to determine the degree of fatigue if the player has been fatigued. The experimental results show that more than 95% of the fatigue state can be recognized by surface electromyography (EMG) signal.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fatigue and Abnormal State Detection by Using EMG Signal During Football Training\",\"authors\":\"Chunhai Cui, Enqian Xin, Meili Qu, Shuai Jiang\",\"doi\":\"10.4018/IJDST.2021040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to monitor and recognize the fatigue state during football training by analyzing the surface electromyography (EMG) signals. The surface electromyography (EMG) signal is closely connected with the state during sports and training. First, power frequency interference, motion artifacts, and baseline drift in the surface electromyography (EMG) signal are removed; second, the authors extract 6 features: rectified average value (ARV), integrated electromyography myoelectric value (IEMG), root mean square of electromyography value (RMS), median frequency (MF), average power frequency (MPF), and electromyography power (TP) to represent the surface electromyography (EMG) signal; lastly, the extracted features are input into a one-class support vector machine to determine whether the player has been fatigued and are input into a weighted support vector machine to determine the degree of fatigue if the player has been fatigued. The experimental results show that more than 95% of the fatigue state can be recognized by surface electromyography (EMG) signal.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDST.2021040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDST.2021040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了利用肌电信号分析来监测和识别足球训练过程中的疲劳状态。运动训练过程中肌表电信号与状态密切相关。首先,去除表面肌电信号中的工频干扰、运动伪影和基线漂移;其次,提取整流平均值(ARV)、综合肌电值(IEMG)、肌电值均方根(RMS)、中位数频率(MF)、平均工频(MPF)、肌电功率(TP) 6个特征来表示肌表电(EMG)信号;最后,将提取的特征输入到一类支持向量机中,以确定玩家是否已经疲劳,并将其输入到加权支持向量机中,以确定玩家是否已经疲劳。实验结果表明,肌表电信号可识别95%以上的疲劳状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue and Abnormal State Detection by Using EMG Signal During Football Training
This paper proposes to monitor and recognize the fatigue state during football training by analyzing the surface electromyography (EMG) signals. The surface electromyography (EMG) signal is closely connected with the state during sports and training. First, power frequency interference, motion artifacts, and baseline drift in the surface electromyography (EMG) signal are removed; second, the authors extract 6 features: rectified average value (ARV), integrated electromyography myoelectric value (IEMG), root mean square of electromyography value (RMS), median frequency (MF), average power frequency (MPF), and electromyography power (TP) to represent the surface electromyography (EMG) signal; lastly, the extracted features are input into a one-class support vector machine to determine whether the player has been fatigued and are input into a weighted support vector machine to determine the degree of fatigue if the player has been fatigued. The experimental results show that more than 95% of the fatigue state can be recognized by surface electromyography (EMG) signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信