基于属性与目标属性关联的面向属性的归纳方法改进

Y. Qu, Xiaoyu Li, He Wang
{"title":"基于属性与目标属性关联的面向属性的归纳方法改进","authors":"Y. Qu, Xiaoyu Li, He Wang","doi":"10.1109/ICMLC.2014.7009689","DOIUrl":null,"url":null,"abstract":"Attribute-oriented induction (AOI) is one of the classical knowledge discovery methods for a relational database query in the field of data mining. On the basis of deeply analysis on the principles of the AOI method, this paper points out some problems existing in it such as redundant attributes after generalization and the invalid rules. This paper puts forward the concept of correlation degree with target attribute, and then gives the improved algorithm according to it Removing the redundant attributes with weak correlation degree with target attribute could help the improved AOI overcome the problems existing in the classical AOI method, and thus improve its efficiency. Different approaches to calculate correlation degree with target attribute are defined to deal with different type of data. Grey relation and attribute reduction based on rough set method are induced to fulfill the above calculation. Experiments on an example demonstrate the effectiveness of the proposed method.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improvement of attribute-oriented induction method based on attribute correlation with target attribute\",\"authors\":\"Y. Qu, Xiaoyu Li, He Wang\",\"doi\":\"10.1109/ICMLC.2014.7009689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute-oriented induction (AOI) is one of the classical knowledge discovery methods for a relational database query in the field of data mining. On the basis of deeply analysis on the principles of the AOI method, this paper points out some problems existing in it such as redundant attributes after generalization and the invalid rules. This paper puts forward the concept of correlation degree with target attribute, and then gives the improved algorithm according to it Removing the redundant attributes with weak correlation degree with target attribute could help the improved AOI overcome the problems existing in the classical AOI method, and thus improve its efficiency. Different approaches to calculate correlation degree with target attribute are defined to deal with different type of data. Grey relation and attribute reduction based on rough set method are induced to fulfill the above calculation. Experiments on an example demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

面向属性的归纳(AOI)是数据挖掘领域中关系数据库查询的经典知识发现方法之一。在深入分析AOI方法原理的基础上,指出了AOI方法存在的泛化后属性冗余、规则无效等问题。提出了与目标属性关联度的概念,并在此基础上给出了改进的AOI算法,去除与目标属性关联度较弱的冗余属性可以帮助改进的AOI方法克服经典AOI方法存在的问题,从而提高其效率。针对不同类型的数据,定义了不同的目标属性关联度计算方法。引入了基于粗糙集的灰色关联和属性约简方法来实现上述计算。算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of attribute-oriented induction method based on attribute correlation with target attribute
Attribute-oriented induction (AOI) is one of the classical knowledge discovery methods for a relational database query in the field of data mining. On the basis of deeply analysis on the principles of the AOI method, this paper points out some problems existing in it such as redundant attributes after generalization and the invalid rules. This paper puts forward the concept of correlation degree with target attribute, and then gives the improved algorithm according to it Removing the redundant attributes with weak correlation degree with target attribute could help the improved AOI overcome the problems existing in the classical AOI method, and thus improve its efficiency. Different approaches to calculate correlation degree with target attribute are defined to deal with different type of data. Grey relation and attribute reduction based on rough set method are induced to fulfill the above calculation. Experiments on an example demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信