近似高次代数数的精确多项式因式分解

Jingwei Chen, Yong Feng, Xiaolin Qin, Jingzhong Zhang
{"title":"近似高次代数数的精确多项式因式分解","authors":"Jingwei Chen, Yong Feng, Xiaolin Qin, Jingzhong Zhang","doi":"10.1145/1577190.1577199","DOIUrl":null,"url":null,"abstract":"For factoring polynomials in two variables with rational coefficients, an algorithm using transcendental evaluation was presented by Hulst and Lenstra. In their algorithm, transcendence measure was computed. However, a constant c is necessary to compute the transcendence measure. The size of c involved the transcendence measure can influence the efficiency of the algorithm greatly.\n In this paper, we overcome the problem arising in Hulst and Lenstra's algorithm and propose a new polynomial time algorithm for factoring bivariate polynomials with rational coefficients. Using an approximate algebraic number of high degree instead of a variable of a bivariate polynomial, we can get a univariate one. A factor of the resulting univariate polynomial can then be obtained by a numerical root finder and the purely numerical LLL algorithm. The high degree of the algebraic number guarantees that this factor corresponds to a factor of the original bivariate polynomial. We prove that our algorithm saves a (log2(mn))2+ε factor in bit-complexity comparing with the algorithm presented by Hulst and Lenstra, where (n, m) represents the bi-degree of the polynomial to be factored. We also demonstrate on many significant experiments that our algorithm is practical. Moreover our algorithm can be generalized to polynomials with variables more than two.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact polynomial factorization by approximate high degree algebraic numbers\",\"authors\":\"Jingwei Chen, Yong Feng, Xiaolin Qin, Jingzhong Zhang\",\"doi\":\"10.1145/1577190.1577199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For factoring polynomials in two variables with rational coefficients, an algorithm using transcendental evaluation was presented by Hulst and Lenstra. In their algorithm, transcendence measure was computed. However, a constant c is necessary to compute the transcendence measure. The size of c involved the transcendence measure can influence the efficiency of the algorithm greatly.\\n In this paper, we overcome the problem arising in Hulst and Lenstra's algorithm and propose a new polynomial time algorithm for factoring bivariate polynomials with rational coefficients. Using an approximate algebraic number of high degree instead of a variable of a bivariate polynomial, we can get a univariate one. A factor of the resulting univariate polynomial can then be obtained by a numerical root finder and the purely numerical LLL algorithm. The high degree of the algebraic number guarantees that this factor corresponds to a factor of the original bivariate polynomial. We prove that our algorithm saves a (log2(mn))2+ε factor in bit-complexity comparing with the algorithm presented by Hulst and Lenstra, where (n, m) represents the bi-degree of the polynomial to be factored. We also demonstrate on many significant experiments that our algorithm is practical. Moreover our algorithm can be generalized to polynomials with variables more than two.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Hulst和Lenstra提出了一种基于超越求值的二元有理系数多项式分解算法。在该算法中,计算了超越测度。然而,一个常数c是计算超越测度所必需的。涉及超越测度的c的大小会极大地影响算法的效率。本文克服了Hulst和Lenstra算法中存在的问题,提出了一种新的二元有理系数多项式分解的多项式时间算法。用一个近似的高次代数数代替二元多项式的变量,可以得到一元多项式。由此得到的单变量多项式的因子可以通过一个数值根查找器和纯数值LLL算法得到。代数数的高次保证了这个因子对应于原始二元多项式的一个因子。与Hulst和Lenstra提出的算法相比,我们证明了我们的算法在比特复杂度上节省了(log2(mn))2+ε因子,其中(n, m)表示要分解的多项式的双次。我们还通过许多重要的实验证明了我们的算法是实用的。该算法还可以推广到变量大于2的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact polynomial factorization by approximate high degree algebraic numbers
For factoring polynomials in two variables with rational coefficients, an algorithm using transcendental evaluation was presented by Hulst and Lenstra. In their algorithm, transcendence measure was computed. However, a constant c is necessary to compute the transcendence measure. The size of c involved the transcendence measure can influence the efficiency of the algorithm greatly. In this paper, we overcome the problem arising in Hulst and Lenstra's algorithm and propose a new polynomial time algorithm for factoring bivariate polynomials with rational coefficients. Using an approximate algebraic number of high degree instead of a variable of a bivariate polynomial, we can get a univariate one. A factor of the resulting univariate polynomial can then be obtained by a numerical root finder and the purely numerical LLL algorithm. The high degree of the algebraic number guarantees that this factor corresponds to a factor of the original bivariate polynomial. We prove that our algorithm saves a (log2(mn))2+ε factor in bit-complexity comparing with the algorithm presented by Hulst and Lenstra, where (n, m) represents the bi-degree of the polynomial to be factored. We also demonstrate on many significant experiments that our algorithm is practical. Moreover our algorithm can be generalized to polynomials with variables more than two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信