{"title":"基于风险和发病率的可穿戴医疗计算设备心房颤动检测方案","authors":"R. Bouhenguel, I. Mahgoub","doi":"10.4108/ICST.PERVASIVEHEALTH.2012.248670","DOIUrl":null,"url":null,"abstract":"Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.","PeriodicalId":119950,"journal":{"name":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A risk and Incidence Based Atrial Fibrillation Detection Scheme for wearable healthcare computing devices\",\"authors\":\"R. Bouhenguel, I. Mahgoub\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2012.248670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.\",\"PeriodicalId\":119950,\"journal\":{\"name\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A risk and Incidence Based Atrial Fibrillation Detection Scheme for wearable healthcare computing devices
Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.