缺少隐式反馈的Top-N推荐

Daryl Lim, Julian McAuley, Gert R. G. Lanckriet
{"title":"缺少隐式反馈的Top-N推荐","authors":"Daryl Lim, Julian McAuley, Gert R. G. Lanckriet","doi":"10.1145/2792838.2799671","DOIUrl":null,"url":null,"abstract":"In implicit feedback datasets, non-interaction of a user with an item does not necessarily indicate that an item is irrelevant for the user. Thus, evaluation measures computed on the observed feedback may not accurately reflect performance on the complete data. In this paper, we discuss a missing data model for implicit feedback and propose a novel evaluation measure oriented towards Top-N recommendation. Our evaluation measure admits unbiased estimation under our missing data model, unlike the popular Normalized Discounted Cumulative Gain (NDCG) measure. We also derive an efficient algorithm to optimize the measure on the training data. We run several experiments which demonstrate the utility of our proposed measure.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Top-N Recommendation with Missing Implicit Feedback\",\"authors\":\"Daryl Lim, Julian McAuley, Gert R. G. Lanckriet\",\"doi\":\"10.1145/2792838.2799671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In implicit feedback datasets, non-interaction of a user with an item does not necessarily indicate that an item is irrelevant for the user. Thus, evaluation measures computed on the observed feedback may not accurately reflect performance on the complete data. In this paper, we discuss a missing data model for implicit feedback and propose a novel evaluation measure oriented towards Top-N recommendation. Our evaluation measure admits unbiased estimation under our missing data model, unlike the popular Normalized Discounted Cumulative Gain (NDCG) measure. We also derive an efficient algorithm to optimize the measure on the training data. We run several experiments which demonstrate the utility of our proposed measure.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2799671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在隐式反馈数据集中,用户与项目的非交互并不一定表明该项目与用户无关。因此,根据观察到的反馈计算的评估度量可能不能准确地反映完整数据的性能。本文讨论了隐式反馈的缺失数据模型,并提出了一种面向Top-N推荐的评价方法。与流行的归一化贴现累积增益(NDCG)度量不同,我们的评估度量在缺失数据模型下允许无偏估计。我们还推导了一种有效的算法来优化训练数据上的度量。我们进行了几个实验,证明了我们提出的措施的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Top-N Recommendation with Missing Implicit Feedback
In implicit feedback datasets, non-interaction of a user with an item does not necessarily indicate that an item is irrelevant for the user. Thus, evaluation measures computed on the observed feedback may not accurately reflect performance on the complete data. In this paper, we discuss a missing data model for implicit feedback and propose a novel evaluation measure oriented towards Top-N recommendation. Our evaluation measure admits unbiased estimation under our missing data model, unlike the popular Normalized Discounted Cumulative Gain (NDCG) measure. We also derive an efficient algorithm to optimize the measure on the training data. We run several experiments which demonstrate the utility of our proposed measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信