双威超级计算机上位场积分方程的并行快速多极法*

Wen Wang
{"title":"双威超级计算机上位场积分方程的并行快速多极法*","authors":"Wen Wang","doi":"10.1109/COMPEM.2019.8778842","DOIUrl":null,"url":null,"abstract":"Fast multipole method (FMM) is a fast, robust and accurate algorithm which is widely used in molecular dynamics, electrostatics and electromagnetics simulations. In this paper, we implemented and optimized parallel FMM for potential field integral equation on Sunway supercomputer with heterogeneous manycore processors. Two main optimization methods are proposed to improve the performance: direct memory access (DMA) and SIMD vectorization. Morton curve line cutting and local essential tree are used for parallel implementation. The speedup and parallel scalability of FMM are presented.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Fast Multipole Method for Potential Field Integral Equation on Sunway Supercomputer*\",\"authors\":\"Wen Wang\",\"doi\":\"10.1109/COMPEM.2019.8778842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast multipole method (FMM) is a fast, robust and accurate algorithm which is widely used in molecular dynamics, electrostatics and electromagnetics simulations. In this paper, we implemented and optimized parallel FMM for potential field integral equation on Sunway supercomputer with heterogeneous manycore processors. Two main optimization methods are proposed to improve the performance: direct memory access (DMA) and SIMD vectorization. Morton curve line cutting and local essential tree are used for parallel implementation. The speedup and parallel scalability of FMM are presented.\",\"PeriodicalId\":342849,\"journal\":{\"name\":\"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2019.8778842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8778842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速多极子法(FMM)是一种快速、鲁棒和精确的算法,广泛应用于分子动力学、静电学和电磁学仿真。本文在异构多核双威超级计算机上实现并优化了求解位场积分方程的并行FMM算法。提出了两种主要的优化方法:直接存储器访问(DMA)和SIMD矢量化。采用莫顿曲线切线和局部本质树并行实现。介绍了FMM的加速性能和并行可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Fast Multipole Method for Potential Field Integral Equation on Sunway Supercomputer*
Fast multipole method (FMM) is a fast, robust and accurate algorithm which is widely used in molecular dynamics, electrostatics and electromagnetics simulations. In this paper, we implemented and optimized parallel FMM for potential field integral equation on Sunway supercomputer with heterogeneous manycore processors. Two main optimization methods are proposed to improve the performance: direct memory access (DMA) and SIMD vectorization. Morton curve line cutting and local essential tree are used for parallel implementation. The speedup and parallel scalability of FMM are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信