Wafa Aouadj, Mohamed Rida Abdessemed, Rachid Seghir
{"title":"离散大规模多目标教学优化算法","authors":"Wafa Aouadj, Mohamed Rida Abdessemed, Rachid Seghir","doi":"10.1145/3454127.3456609","DOIUrl":null,"url":null,"abstract":"This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.","PeriodicalId":432206,"journal":{"name":"Proceedings of the 4th International Conference on Networking, Information Systems & Security","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Large-scale Multi-Objective Teaching-Learning-Based Optimization Algorithm\",\"authors\":\"Wafa Aouadj, Mohamed Rida Abdessemed, Rachid Seghir\",\"doi\":\"10.1145/3454127.3456609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.\",\"PeriodicalId\":432206,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Networking, Information Systems & Security\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Networking, Information Systems & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3454127.3456609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3454127.3456609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.