基于灰狼优化算法的直线感应电机参数估计

Mohamed I. Abdelwanis
{"title":"基于灰狼优化算法的直线感应电机参数估计","authors":"Mohamed I. Abdelwanis","doi":"10.1109/MEPCON55441.2022.10021695","DOIUrl":null,"url":null,"abstract":"The Grey Wolf Optimization Algorithm (GWOA) is used in this study to estimate the optimal parameters of the three-phase linear induction motor TPLIM. Nameplate data is used as the basis for parameter estimation. The difference between the estimated and actual parameters is used to calculate the objective function, which serves as the primary problem goal, and is used as a fitness function of the GWOA. Additionally, the computed data taken from GWOA is compared with three popular optimization techniques: particle swarm optimization (PSO), deferential evaluation (DE), and genetic algorism (GA). The outcomes demonstrate the effectiveness and potential of the suggested GWOA. The findings show that GWOA can accurately determine the appropriate TPLIM parameters, leading to correct TPLIM performance. This study is utilized to estimate the performance analysis of the TPLIM. Compared to other optimization techniques; the estimated parameters using GWOA achieve the maximum proximity to the actual parameters and the best concordance between the predicted and observed values.","PeriodicalId":174878,"journal":{"name":"2022 23rd International Middle East Power Systems Conference (MEPCON)","volume":"17 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Induction Motor Parameter Estimation Based on Gray Wolves Optimization Algorithm\",\"authors\":\"Mohamed I. Abdelwanis\",\"doi\":\"10.1109/MEPCON55441.2022.10021695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Grey Wolf Optimization Algorithm (GWOA) is used in this study to estimate the optimal parameters of the three-phase linear induction motor TPLIM. Nameplate data is used as the basis for parameter estimation. The difference between the estimated and actual parameters is used to calculate the objective function, which serves as the primary problem goal, and is used as a fitness function of the GWOA. Additionally, the computed data taken from GWOA is compared with three popular optimization techniques: particle swarm optimization (PSO), deferential evaluation (DE), and genetic algorism (GA). The outcomes demonstrate the effectiveness and potential of the suggested GWOA. The findings show that GWOA can accurately determine the appropriate TPLIM parameters, leading to correct TPLIM performance. This study is utilized to estimate the performance analysis of the TPLIM. Compared to other optimization techniques; the estimated parameters using GWOA achieve the maximum proximity to the actual parameters and the best concordance between the predicted and observed values.\",\"PeriodicalId\":174878,\"journal\":{\"name\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"volume\":\"17 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Middle East Power Systems Conference (MEPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEPCON55441.2022.10021695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON55441.2022.10021695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用灰狼优化算法(GWOA)估计三相直线感应电机TPLIM的最优参数。铭牌数据作为参数估计的依据。利用估计参数与实际参数的差值计算目标函数,作为问题的主要目标,并作为GWOA的适应度函数。此外,从GWOA中获取的计算数据与三种流行的优化技术:粒子群优化(PSO)、顺从评估(DE)和遗传算法(GA)进行了比较。研究结果证明了该方法的有效性和潜力。研究结果表明,GWOA可以准确地确定合适的TPLIM参数,从而获得正确的TPLIM性能。本研究用于评估TPLIM的性能分析。与其他优化技术相比;用GWOA估计的参数与实际参数最接近,预测值与实测值的一致性最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Induction Motor Parameter Estimation Based on Gray Wolves Optimization Algorithm
The Grey Wolf Optimization Algorithm (GWOA) is used in this study to estimate the optimal parameters of the three-phase linear induction motor TPLIM. Nameplate data is used as the basis for parameter estimation. The difference between the estimated and actual parameters is used to calculate the objective function, which serves as the primary problem goal, and is used as a fitness function of the GWOA. Additionally, the computed data taken from GWOA is compared with three popular optimization techniques: particle swarm optimization (PSO), deferential evaluation (DE), and genetic algorism (GA). The outcomes demonstrate the effectiveness and potential of the suggested GWOA. The findings show that GWOA can accurately determine the appropriate TPLIM parameters, leading to correct TPLIM performance. This study is utilized to estimate the performance analysis of the TPLIM. Compared to other optimization techniques; the estimated parameters using GWOA achieve the maximum proximity to the actual parameters and the best concordance between the predicted and observed values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信