基于神经网络的认知无线电频谱感知技术

S. Pattanayak, P. Venkateswaran, R. Nandi
{"title":"基于神经网络的认知无线电频谱感知技术","authors":"S. Pattanayak, P. Venkateswaran, R. Nandi","doi":"10.23919/RADIO.2018.8572422","DOIUrl":null,"url":null,"abstract":"An ANN based spectrum sensing technique for audio FM and the wireless microphone signals in TV band is proposed. The artificial neural network (ANN) model trained with the autocorrelation peaks of the signal in channel identifies it as a white space or a primary signal. The performance of this technique is efficient in terms of false alarm rate and probability of detection; the proposed method presents less mathematical complexity as compared to other recent spectrum sensing techniques. Simulation results are presented.","PeriodicalId":365518,"journal":{"name":"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANN Based Spectrum Sensing Technique for Cognitive Radio Applications\",\"authors\":\"S. Pattanayak, P. Venkateswaran, R. Nandi\",\"doi\":\"10.23919/RADIO.2018.8572422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ANN based spectrum sensing technique for audio FM and the wireless microphone signals in TV band is proposed. The artificial neural network (ANN) model trained with the autocorrelation peaks of the signal in channel identifies it as a white space or a primary signal. The performance of this technique is efficient in terms of false alarm rate and probability of detection; the proposed method presents less mathematical complexity as compared to other recent spectrum sensing techniques. Simulation results are presented.\",\"PeriodicalId\":365518,\"journal\":{\"name\":\"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/RADIO.2018.8572422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/RADIO.2018.8572422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于人工神经网络的音频调频和电视频段无线麦克风信号频谱感知技术。利用信道中信号的自相关峰进行训练的人工神经网络(ANN)模型将其识别为空白信号或主信号。在虚警率和检测概率方面,该技术的性能是有效的;与其他最新的频谱传感技术相比,该方法具有较低的数学复杂度。给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN Based Spectrum Sensing Technique for Cognitive Radio Applications
An ANN based spectrum sensing technique for audio FM and the wireless microphone signals in TV band is proposed. The artificial neural network (ANN) model trained with the autocorrelation peaks of the signal in channel identifies it as a white space or a primary signal. The performance of this technique is efficient in terms of false alarm rate and probability of detection; the proposed method presents less mathematical complexity as compared to other recent spectrum sensing techniques. Simulation results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信