压力:一个半自动化的、完全可复制的项目选择方法

D. Falessi, Wyatt Smith, Alexander Serebrenik
{"title":"压力:一个半自动化的、完全可复制的项目选择方法","authors":"D. Falessi, Wyatt Smith, Alexander Serebrenik","doi":"10.1109/ESEM.2017.22","DOIUrl":null,"url":null,"abstract":"The mining of software repositories has provided significant advances in a multitude of software engineering fields, including defect prediction. Several studies show that the performance of a software engineering technology (e.g., prediction model) differs across different project repositories. Thus, it is important that the project selection is replicable. The aim of this paper is to present STRESS, a semi-automated and fully replicable approach that allows researchers to select projects by configuring the desired level of diversity, fit, and quality. STRESS records the rationale behind the researcher decisions and allows different users to re-run or modify such decisions. STRESS is open-source and it can be used used locally or even online (www.falessi.com/STRESS/). We perform a systematic mapping study that considers studies that analyzed projects managed with JIRA and Git to asses the project selection replicability of past studies. We validate the feasible application of STRESS in realistic research scenarios by applying STRESS to select projects among the 211 Apache Software Foundation projects. Our systematic mapping study results show that none of the 68 analyzed studies is completely replicable. Regarding STRESS, it successfully supported the project selection among all 211 ASF projects. It also supported the measurement of 100 projects characteristics, including the 32 criteria of the studies analyzed in our mapping study. The mapping study and STRESS are, to our best knowledge, the first attempt to investigate and support the replicability of project selection. We plan to extend them to other technologies such as GitHub.","PeriodicalId":213866,"journal":{"name":"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"STRESS: A Semi-Automated, Fully Replicable Approach for Project Selection\",\"authors\":\"D. Falessi, Wyatt Smith, Alexander Serebrenik\",\"doi\":\"10.1109/ESEM.2017.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mining of software repositories has provided significant advances in a multitude of software engineering fields, including defect prediction. Several studies show that the performance of a software engineering technology (e.g., prediction model) differs across different project repositories. Thus, it is important that the project selection is replicable. The aim of this paper is to present STRESS, a semi-automated and fully replicable approach that allows researchers to select projects by configuring the desired level of diversity, fit, and quality. STRESS records the rationale behind the researcher decisions and allows different users to re-run or modify such decisions. STRESS is open-source and it can be used used locally or even online (www.falessi.com/STRESS/). We perform a systematic mapping study that considers studies that analyzed projects managed with JIRA and Git to asses the project selection replicability of past studies. We validate the feasible application of STRESS in realistic research scenarios by applying STRESS to select projects among the 211 Apache Software Foundation projects. Our systematic mapping study results show that none of the 68 analyzed studies is completely replicable. Regarding STRESS, it successfully supported the project selection among all 211 ASF projects. It also supported the measurement of 100 projects characteristics, including the 32 criteria of the studies analyzed in our mapping study. The mapping study and STRESS are, to our best knowledge, the first attempt to investigate and support the replicability of project selection. We plan to extend them to other technologies such as GitHub.\",\"PeriodicalId\":213866,\"journal\":{\"name\":\"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESEM.2017.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

软件存储库的挖掘已经在许多软件工程领域提供了显著的进步,包括缺陷预测。一些研究表明,软件工程技术(例如,预测模型)的性能在不同的项目存储库中是不同的。因此,重要的是项目选择是可复制的。本文的目的是介绍STRESS,这是一种半自动化和完全可复制的方法,允许研究人员通过配置所需的多样性,适合度和质量水平来选择项目。STRESS记录了研究人员决策背后的基本原理,并允许不同的用户重新运行或修改这些决策。STRESS是开源的,可以在本地使用,甚至可以在线使用(www.falessi.com/STRESS/)。我们进行了一项系统的映射研究,该研究考虑了使用JIRA和Git管理的项目分析研究,以评估过去研究的项目选择可复制性。我们通过在211个Apache软件基金会项目中选择项目来验证STRESS在现实研究场景中的可行性应用。我们系统的图谱研究结果表明,68项分析研究中没有一项是完全可复制的。在STRESS方面,它成功地支持了211个ASF项目中的项目选择。它还支持对100个项目特征的度量,包括在我们的测绘研究中分析的研究的32个标准。据我们所知,测绘研究和STRESS是调查和支持项目选择可复制性的第一次尝试。我们计划将其扩展到其他技术,如GitHub。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STRESS: A Semi-Automated, Fully Replicable Approach for Project Selection
The mining of software repositories has provided significant advances in a multitude of software engineering fields, including defect prediction. Several studies show that the performance of a software engineering technology (e.g., prediction model) differs across different project repositories. Thus, it is important that the project selection is replicable. The aim of this paper is to present STRESS, a semi-automated and fully replicable approach that allows researchers to select projects by configuring the desired level of diversity, fit, and quality. STRESS records the rationale behind the researcher decisions and allows different users to re-run or modify such decisions. STRESS is open-source and it can be used used locally or even online (www.falessi.com/STRESS/). We perform a systematic mapping study that considers studies that analyzed projects managed with JIRA and Git to asses the project selection replicability of past studies. We validate the feasible application of STRESS in realistic research scenarios by applying STRESS to select projects among the 211 Apache Software Foundation projects. Our systematic mapping study results show that none of the 68 analyzed studies is completely replicable. Regarding STRESS, it successfully supported the project selection among all 211 ASF projects. It also supported the measurement of 100 projects characteristics, including the 32 criteria of the studies analyzed in our mapping study. The mapping study and STRESS are, to our best knowledge, the first attempt to investigate and support the replicability of project selection. We plan to extend them to other technologies such as GitHub.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信