Jennifer B. Sartor, W. Heirman, S. Blackburn, L. Eeckhout, K. McKinley
{"title":"协同缓存清理","authors":"Jennifer B. Sartor, W. Heirman, S. Blackburn, L. Eeckhout, K. McKinley","doi":"10.1145/2628071.2628083","DOIUrl":null,"url":null,"abstract":"Managing the limited resources of power and memory bandwidth while improving performance on multicore hardware is challenging. In particular, more cores demand more memory bandwidth, and multi-threaded applications increasingly stress memory systems, leading to more energy consumption. However, we demonstrate that not all memory traffic is necessary. For modern Java programs, 10 to 60% of DRAM writes are useless, because the data on these lines are dead — the program is guaranteed to never read them again. Furthermore, reading memory only to immediately zero initialize it wastes bandwidth. We propose a software/hardware cooperative solution: the memory manager communicates dead and zero lines with cache scrubbing instructions. We show how scrubbing instructions satisfy MESI cache coherence protocol invariants and demonstrate them in a Java Virtual Machine and multicore simulator. Scrubbing reduces average DRAM traffic by 59%, total DRAM energy by 14%, and dynamic DRAM energy by 57% on a range of configurations. Cooperative software/hardware cache scrubbing reduces memory bandwidth and improves energy efficiency, two critical problems in modern systems.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Cooperative cache scrubbing\",\"authors\":\"Jennifer B. Sartor, W. Heirman, S. Blackburn, L. Eeckhout, K. McKinley\",\"doi\":\"10.1145/2628071.2628083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing the limited resources of power and memory bandwidth while improving performance on multicore hardware is challenging. In particular, more cores demand more memory bandwidth, and multi-threaded applications increasingly stress memory systems, leading to more energy consumption. However, we demonstrate that not all memory traffic is necessary. For modern Java programs, 10 to 60% of DRAM writes are useless, because the data on these lines are dead — the program is guaranteed to never read them again. Furthermore, reading memory only to immediately zero initialize it wastes bandwidth. We propose a software/hardware cooperative solution: the memory manager communicates dead and zero lines with cache scrubbing instructions. We show how scrubbing instructions satisfy MESI cache coherence protocol invariants and demonstrate them in a Java Virtual Machine and multicore simulator. Scrubbing reduces average DRAM traffic by 59%, total DRAM energy by 14%, and dynamic DRAM energy by 57% on a range of configurations. Cooperative software/hardware cache scrubbing reduces memory bandwidth and improves energy efficiency, two critical problems in modern systems.\",\"PeriodicalId\":263670,\"journal\":{\"name\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628071.2628083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Managing the limited resources of power and memory bandwidth while improving performance on multicore hardware is challenging. In particular, more cores demand more memory bandwidth, and multi-threaded applications increasingly stress memory systems, leading to more energy consumption. However, we demonstrate that not all memory traffic is necessary. For modern Java programs, 10 to 60% of DRAM writes are useless, because the data on these lines are dead — the program is guaranteed to never read them again. Furthermore, reading memory only to immediately zero initialize it wastes bandwidth. We propose a software/hardware cooperative solution: the memory manager communicates dead and zero lines with cache scrubbing instructions. We show how scrubbing instructions satisfy MESI cache coherence protocol invariants and demonstrate them in a Java Virtual Machine and multicore simulator. Scrubbing reduces average DRAM traffic by 59%, total DRAM energy by 14%, and dynamic DRAM energy by 57% on a range of configurations. Cooperative software/hardware cache scrubbing reduces memory bandwidth and improves energy efficiency, two critical problems in modern systems.