开卷分解与封闭定向3流形的质因数分解

P. Ghiggini, P. Lisca
{"title":"开卷分解与封闭定向3流形的质因数分解","authors":"P. Ghiggini, P. Lisca","doi":"10.2140/GTM.2015.19.145","DOIUrl":null,"url":null,"abstract":"Let M be a closed, oriented, connected 3–manifold and .B; / an open book decomposition on M with page † and monodromy ' . It is easy to see that the first Betti number of † is bounded below by the number of S S –factors in the prime factorization of M . Our main result is that equality is realized if and only if ' is trivial and M is a connected sum of copies of S S . We also give some applications of our main result, such as a new proof of the fact that if the closure of a braid with n strands is the unlink with n components then the braid is trivial.","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Open book decompositions versus prime factorizations of closed, oriented 3-manifolds\",\"authors\":\"P. Ghiggini, P. Lisca\",\"doi\":\"10.2140/GTM.2015.19.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a closed, oriented, connected 3–manifold and .B; / an open book decomposition on M with page † and monodromy ' . It is easy to see that the first Betti number of † is bounded below by the number of S S –factors in the prime factorization of M . Our main result is that equality is realized if and only if ' is trivial and M is a connected sum of copies of S S . We also give some applications of our main result, such as a new proof of the fact that if the closure of a braid with n strands is the unlink with n components then the braid is trivial.\",\"PeriodicalId\":115248,\"journal\":{\"name\":\"Geometry and Topology Monographs\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry and Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GTM.2015.19.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.2015.19.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设M是一个封闭的、定向的、连通的3流形,b;/一个打开的书在M上的分解,页面为†,单字为'。很容易看出,†的第一个Betti数以M的质因数分解中S个S因子的个数为界。我们的主要结论是当且仅当'是平凡的且M是S S的拷贝的连通和时,等式才得以实现。我们还给出了主要结果的一些应用,例如一个新的证明,如果一个n股辫状体的闭包是有n个分量的不连接,那么这个辫状体是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open book decompositions versus prime factorizations of closed, oriented 3-manifolds
Let M be a closed, oriented, connected 3–manifold and .B; / an open book decomposition on M with page † and monodromy ' . It is easy to see that the first Betti number of † is bounded below by the number of S S –factors in the prime factorization of M . Our main result is that equality is realized if and only if ' is trivial and M is a connected sum of copies of S S . We also give some applications of our main result, such as a new proof of the fact that if the closure of a braid with n strands is the unlink with n components then the braid is trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信