Tunka火流星形成的长寿命流星轨迹的颜色和光谱特征

A. Mikhalev
{"title":"Tunka火流星形成的长寿命流星轨迹的颜色和光谱特征","authors":"A. Mikhalev","doi":"10.12737/szf-83202209","DOIUrl":null,"url":null,"abstract":"The paper addresses color characteristics and possible spectral composition of emission of a long-lived (~40 min) meteor trail of uncommon geometry, which was formed due to the bolide passage in the Tunka Valley on November 17, 2017. Analysis of dynamics of RGB channels of the meteor trail colored image shows that during the first ~8 minutes the meteor trail emission might have been contributed by the ionization trail. The ionization trail was formed by particles of the meteor matter neutral and ionized components that were heated to high temperatures on the surface of the main meteoroid and separated from it. We also examine the discussed mechanism of heterogeneous chemical reactions occurring on the surface of meteoric dust (FeS, FeO, etc.) with participation of atoms and molecules of atmospheric gases. The yellowish color of the Tunka bolide meteor trail was assumed to be determined, first of all, by the emission of molecular nitrogen N₂ band within the 570–750 nm spectral range (the first positive system) and/or enhancement of NO*₂ continuum in heterogeneous chemical reactions. The meteor trail emission spectrum should also include relatively bright atomic lines and molecular bands of the meteoric matter and atmospheric gases FeI, MgI, CaI, SiI, NaI, FeO and SO₂, OI, OH, etc.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"33 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color and spectral characteristics of long-lived meteor trail formed by the Tunka bolide\",\"authors\":\"A. Mikhalev\",\"doi\":\"10.12737/szf-83202209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses color characteristics and possible spectral composition of emission of a long-lived (~40 min) meteor trail of uncommon geometry, which was formed due to the bolide passage in the Tunka Valley on November 17, 2017. Analysis of dynamics of RGB channels of the meteor trail colored image shows that during the first ~8 minutes the meteor trail emission might have been contributed by the ionization trail. The ionization trail was formed by particles of the meteor matter neutral and ionized components that were heated to high temperatures on the surface of the main meteoroid and separated from it. We also examine the discussed mechanism of heterogeneous chemical reactions occurring on the surface of meteoric dust (FeS, FeO, etc.) with participation of atoms and molecules of atmospheric gases. The yellowish color of the Tunka bolide meteor trail was assumed to be determined, first of all, by the emission of molecular nitrogen N₂ band within the 570–750 nm spectral range (the first positive system) and/or enhancement of NO*₂ continuum in heterogeneous chemical reactions. The meteor trail emission spectrum should also include relatively bright atomic lines and molecular bands of the meteoric matter and atmospheric gases FeI, MgI, CaI, SiI, NaI, FeO and SO₂, OI, OH, etc.\",\"PeriodicalId\":351867,\"journal\":{\"name\":\"Solnechno-Zemnaya Fizika\",\"volume\":\"33 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solnechno-Zemnaya Fizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12737/szf-83202209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/szf-83202209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了2017年11月17日通卡山谷的流星通道形成的长寿命(~40分钟)流星尾迹的颜色特征和可能的光谱组成。对彩色流星尾迹图像RGB通道的动态分析表明,在最初~8分钟内,流星尾迹的发射可能是由电离尾迹贡献的。电离轨迹是由流星物质的中性和电离成分的粒子形成的,它们在主流星体表面被加热到高温并与之分离。本文还讨论了大气气体原子和分子参与的大气尘埃(FeS、FeO等)表面非均相化学反应的机理。Tunka流星尾迹的淡黄色首先是由于分子氮N₂在570-750 nm光谱范围内(第一个正体系)的发射和/或非均相化学反应中NO* 2连续体的增强所致。流星尾迹发射光谱还应包括流星物质和大气气体FeI、MgI、CaI、SiI、NaI、FeO和so2、OI、OH等相对明亮的原子谱线和分子谱带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color and spectral characteristics of long-lived meteor trail formed by the Tunka bolide
The paper addresses color characteristics and possible spectral composition of emission of a long-lived (~40 min) meteor trail of uncommon geometry, which was formed due to the bolide passage in the Tunka Valley on November 17, 2017. Analysis of dynamics of RGB channels of the meteor trail colored image shows that during the first ~8 minutes the meteor trail emission might have been contributed by the ionization trail. The ionization trail was formed by particles of the meteor matter neutral and ionized components that were heated to high temperatures on the surface of the main meteoroid and separated from it. We also examine the discussed mechanism of heterogeneous chemical reactions occurring on the surface of meteoric dust (FeS, FeO, etc.) with participation of atoms and molecules of atmospheric gases. The yellowish color of the Tunka bolide meteor trail was assumed to be determined, first of all, by the emission of molecular nitrogen N₂ band within the 570–750 nm spectral range (the first positive system) and/or enhancement of NO*₂ continuum in heterogeneous chemical reactions. The meteor trail emission spectrum should also include relatively bright atomic lines and molecular bands of the meteoric matter and atmospheric gases FeI, MgI, CaI, SiI, NaI, FeO and SO₂, OI, OH, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信